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Outline 

 What’s all this about heterogeneous systems? 
 Heterogeneity and performance tools 
 Beating up on TAU 
 Task performance abstraction and good ‘ol master/worker 
 What’s all this about GPGPU’s? 

 Accelerator performance measurement in PGI compiler 
 TAU CUDA performance measurement 

 Final thoughts 
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Heterogeneous Parallel Systems 

 What does it mean to be heterogenous? 
 New Oxford America, 2nd Edition: 

  diverse in character or content 
 Prof. Dr. Felix Wolf, Sage of Research Centre Juelich: 

  not homogeneous 
 Diversity in what? 

 Hardware 
 processors/cores, memory, interconnection, … 
 different in computing elements and how they are used 

 Software (hybrid) 
 how the hardware is programmed 
 different software models, libraries, frameworks, … 

 Diversity when?  Heterogeneous implies combining together 
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Why Do We Care? 

 Heterogeneity has been around for a long time 
 Have different programmable components in computer systems 
 Long history of specialized hardware 

 Heterogeneous (computing) technology more accessible 
 Multicore processors 
 Manycore accelerators (e.g., NVIDIA Tesla GPU) 
 High-performance processing engines (e.g., IBM Cell BE) 

 Performance is the main driving concern 
 Heterogeneity is arguably the only path to extreme scale 

 Heterogeneous (hybrid) software technology required 
 Greater performance enables more powerful software 

 Will give rise to more sophisticated software environments 
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Implications for Performance Tools 

 Tools should support parallel computation models 
 Current status quo is comfortable 

 Mostly homogeneous parallel systems and software 
 Shared-memory multithreading – OpenMP 
 Distributed-memory message passing – MPI 

 Parallel computational models are relatively stable (simple) 
 Corresponding performance models are relatively tractable 
 Parallel performance tools are just keeping up 

 Heterogeneity creates richer computational potential 
 Results in greater performance diversity and complexity 

 Performance tools have to support richer computation models
 and broader (less constrained) performance perspectives 
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Current TAU Performance Perspective 

 TAU is a direct measurement performance systems 
 Event stack performance perspective for “threads of execution” 
 Message communication performance 

 TAU measures two general types of events 
 Interval event: coupled begin and end events 
 Atomic events 

 TAU also maintains an event stack during execution 
 Events can be nested 
 Top of event stack the event context 
 Used to generate callpath performance measurements 
 Events can not overlap! (TAU enforces this requirement) 

 What about events that are not event stack compatible? 
6 



Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009 

MPI and Performance View 

 TAU measures MPI events through the MPI interface 
 Standard PMPI approach (same as other tools) 
 Performance for interval events plus metadata 

 Consider a paired message send/receive between P1 and P2 
 Suppose we want to measure the time on P1 from: 

 when P1 sends a message to P2 
  to when P1 receives a message from P2 

 TAU MPI events will not do this 
 Can create a TAU user-level interval event (s-r) 

  s-r begin and s-r end must have the same event context 
 no other events can overlap (nested events are ok) 

 What if these requirements can not be maintained? 
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Conflicting Contexts in Send-Receive MPI Scenario  
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Context a 

Context b 
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Supporting Multiple Performance Perspectives 

 Need to support alternative performance views 
 Reflect execution logic beyond standard actions 
 Capture performance semantics at multiple levels 
 Allow for compatible perspectives that do not conflict 

 TAU event stack (nesting) perspective somewhat limited 
 TAU’s performance mapping can partially address need 
 Some frameworks have own performance (timing) packages 

 Cactus, SAMRAI, PETSc, Charm++ 
 Want to leverage/integrate/layer on TAU infrastructure 

 Need also to incorporate views of external performance 
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TAU ProfilerCreate API 

 Exposes TAU measurement infrastructure 
 Software packages can easily access TAU profiler objects 

 Control completely determined by package 
 Can use to translate performance measures 
 Can access and set any part of the profiler information 

 Goal of simplicity 
 API had to be easy to integrate in existing packages! 

 Allows for multiple, layered performance measurements 
 Simultaneous to TAU (internal) measurement system 
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ProfilerCreate API 
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#include <TAU.h> 

//TAU_PROFILER_CREATE(void *ptr, char *name, char *type,
 TauGroup_t tau_group); 

TAU_PROFILER_CREATE(ptr, “main”, “int (int, char**)”,
 TAU_USER); 

TAU_PROFILER_START(ptr); 
// work 
TAU_PROFILER_STOP(ptr); 

#include <TAU.h> 

TAU_PROFILER_GET_INCLUSIVE_VALUES(handle, data) 
TAU_PROFILER_GET_EXCLUSIVE_VALUES(handle, data) 
TAU_PROFILER_GET_CALLS(handle, data) 
TAU_PROFILER_GET_CHILD_CALLS(handle, data) 
TAU_PROFILER_GET_COUNTER_INFO(counters, numcounters) 
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Use of TAU ProfilerCreate API in Cactus 

 Cactus has its own performance evaluation interface 
 Developers prefer to use TAU’s interface 
 Need a runtime performance assessment interface 
 Layered Cactus API on top of new ProfilerCreate API 
 Created a TAU scoping profiler for capturing top-level

 performance event (equivalent to main) 
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Cactus Performance (Full Profile) 

 Events under Cactus control 
 Use TAU to capture timing and hardware measures 
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Performance Views of External Execution 

 Heterogeneous applications can have concurrent execution 
 Main “host” path and “external” external paths 
 Want to capture performance for all execution paths 
 External execution may be difficult or impossible to measure 

 “Host” creates measurement view for external entity 
 Maintains local and remote performance data 
 External entity may provide performance data to the host 

 What perspective does the host have of the external entity? 
 Determines the semantics of  the measurement data 

 Consider the “task” abstraction 
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Task-based Performance Views 
 Host regards external execution as a task 

 Tasks operate concurrently with respect to the host 
 Requires support for tracking asynchronous execution 

 Host keeps measurements for external task 
 Host-side measurements of task events 
 Performance data received external task 
 Tasks may have limited measurement support 
 May depend on host for performance data I/O 

 Need an task performance API 
 Capture abstract (host-side) task events 
 Populate TAU’s performance data structures for task 
 Derived from ProfilerCreate API to address these concerns 
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TAU Task API 
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#include <TAU.h> 

TAU_CREATE_TASK(taskid); 

//TAU_PROFILER_CREATE(void *ptr, char *name, char *type, 
  TauGroup_t tau_group); 

TAU_PROFILER_CREATE(ptr, “main”, “int (int, char**)”, 
  TAU_USER); 

TAU_PROFILER_START_TASK(ptr, taskid); 
// work 
TAU_PROFILER_STOP_TASK(ptr, taskid); 
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TAU Task API (2) 
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#include <TAU.h> 

TAU_PROFILER_GET_INCLUSIVE_VALUES_TASK(ptr, data, taskid); 
TAU_PROFILER_SET_INCLUSIVE_VALUES_TASK(ptr, data, taskid); 

TAU_PROFILER_GET_EXCLUSIVE_VALUES_TASK(ptr, data, taskid); 
TAU_PROFILER_SET_EXCLUSIVE_VALUES_TASK(ptr, data, taskid); 

TAU_PROFILER_GET_CALLS_TASK(ptr, data, taskid); 
TAU_PROFILER_SET_CALLS_TASK(ptr, data, taskid); 

TAU_PROFILER_GET_CHILD_CALLS_TASK(ptr, data, taskid); 
TAU_PROFILER_SET_CHILD_CALLS_TASK(ptr, data, taskid); 
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Master-Worker Scenario with TAU Task API 

 Master sends tasks to N workers 
 Workers report back their performance to master 

 Done for each piece of work 
 Build a worker performance 

perspective in the master 
 TAU will only output a performance 

profile from the master 
 Each work task will appear as a separate “thread” of the master 

 In general, the external performance data can be arbitrary 
 Single time value 
 More complete representation of external performance 
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Master-Worker with Task API: 32 Workers 
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CPU – GPU Execution Scenarios 
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PGI Compiler for GPUs 

 Accelerator programming support 
 Fortran and C 
 Directive-based programming 
 Loop parallelization for acceleration on GPUs 
 PGI 9.0 for x64-based Linux (preview release) 

 Compiled program 
 CUDA target 
 Synchronous accelerator operations 

 Profile interface support 
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TAU with PGI Accelerator Compiler 

 Supports compiler-based instrumentation for PGI compilers 
 Track runtime system events as seen from the host processor 
 Show source information associated with events 

 Routine name 
 File name, source line number for kernel 
 Variable names in memory upload, download operations 
 Grid sizes 

 Any configuration of TAU with PGI supports tracking of
 accelerator operations 
 Tested with PGI 8.0.3, 8.0.5, 8.0.6 compilers 
 Qualification and testing with PGI 9.0-1 complete 
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Wrapping PGI Accelerator Runtime System Calls 

 Wrapping performed using performance interface 
 Append “_p” to runtime calls of interest to measure 

 Provided in calls for: 
 Init 
 Launching kernels (synchronous execution) 
 Upload and download 

void __pgi_cu_module_p(void *image); 
void __pgi_cu_module(void *image) { 
  TAU_PROFILE("__pgi_cu_module","",TAU_DEFAULT); 
  __pgi_cu_module_p(image); 
} 
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PGI Accelerator Runtime Measurement API 

__pgi_cu_sync 
__pgi_cu_fini 
__pgi_cu_module 
__pgi_cu_module_function 
__pgi_cu_module_file 
__pgi_cu_module_unload 
__pgi_cu_paramset 
__pgi_cu_launch 
__pgi_cu_free 
cuda_deviceptr __pgi_cu_alloc 

__pgi_cu_download 
__pgi_cu_download1 
__pgi_cu_download2 
__pgi_cu_download3 
__pgi_cu_downloadp 
__pgi_cu_upload 
__pgi_cu_upload1 
__pgi_cu_upload2 
__pgi_cu_upload3 
__pgi_cu_uploadc 
__pgi_cu_uploadn 
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Matrix Multiply (MM) Example 

 Test with simple 
matrix multiply 

 Vary the matrix 
sizes 

 Demonstrate TAU 
integration 
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Build with Compiler-based Instrumentation 
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MM Profile (3000 x 3000, ~22 Gflops) 
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MM Program on Different Array Sizes 

 Parameter study of MM to evaluate GPU 
 Array sizes: 100, 500, 1000, 2000, 5000 
 10 iterations 
 Results uploaded 

to performance 
database 

 Want to observe 
the effects on 
PGI accelerator 
runtime routines 
 __pgi_cu_launch 
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MM Callpath Profiling – Tree Table View 
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MM Array Size Comparison with PerfExplorer 

 Show effects of array size variation (log scale) 
 Init is significant, 

but constant 
 Launch grows with 

size because of  
computation 

 Upload and 
download do also, 
as determined by 
algorithm 
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MM Trace View with Jumpshot 
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CUDA Programming for GPGPU 

 PGI compiler represents GPGPU programming abstraction 
 Performance tool uses runtime system wrappers 

 essentially a synchronous call performance model!!! 
 In general, programming of GPGPU devices is more complex 
 CUDA environment 

 Programming of multiple streams and GPU devices 
 multiple streams execute concurrently 

 Programming of data transfers to/from GPU device 
 Programming of GPU kernel code 
 Synchronization with streams 
 Stream event interface 
 CUDA profiling tool 
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CPU – GPU Execution Scenarios 
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TAU CUDA Performance Measurement 
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 Build on CUDA event interface 
 Allow “events” to be placed in streams and processed 

 events are timestamped 
 CUDA runtime reports GPU timing in event structure 
 Events are reported back to CPU when requested 

 use begin and end events to calculate intervals 
 Want to associate TAU event context with CUDA events 

 Get top of TAU event stack at begin 
 CUDA kernel invocations are asynchronous 

 CPU does not see actual CUDA “end” event 
 CPU retrieves events in a non-blocking and blocking manner 

 Want to capture “waiting time” 
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TAU CUDA Measurement API 
void tau_cuda_init(int argc, char **argv); 

 To be called when the application starts 
  Initializes data structures and checks GPU status 

void tau_cuda_exit() 
 To be called before any thread exits at end of application 
 All the CUDA profile data output for each thread of execution 

void* tau_cuda_stream_begin(char *event, cudaStream_t stream); 
 Called before CUDA statements to be measured 
 Returns handle which should be used in the end call 
  If event is new or the TAU context is new for the event, a new 

CUDA event profile object is created 
void tau_cuda_stream_end(void * handle); 

 Called immediately after CUDA statements to be measured 
 Handle identifies the stream 
  Inserts a CUDA event into the stream 
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TAU CUDA Measurement API (2) 
vector<Event> tau_cuda_update(); 

 Checks for completed CUDA events on all streams 
 Non-blocking and returns # completed on each stream 

int tau_cuda_update(cudaStream_t stream); 
 Same as tau_cuda_update() except for a particular stream 
 Non-blocking and returns # completed on the stream 

vector<Event> tau_cuda_finalize(); 
 Waits for all CUDA events to complete on all streams 
 Blocking and returns # completed on each stream 

int tau_cuda_finalize(cudaStream_t stream); 
 Same as tau_cuda_finalize() except for a particular stream 
 Blocking and returns # completed on the stream 

36 



Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009 

Scenario Results – One and Two Streams 

 Run simple CUDA experiments to test TAU CUDA 
 Tesla S1070 test system 
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Scenario Results – Two Devices, Two Contexts 
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TAU CUDA in NAMD 

 TAU integrated in Charm++ (another talk) 
 NAMD is a molecular dynamics application using Charm++ 
 NAMD has been accelerated with CUDA 
 Test out TAU CUDA with NAMD 

 Two processes with one Tesla GPU for each 
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CPU profile 

GPU profile (P0) 

GPU profile (P1) 
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Conclusions 

 Heterogeneous parallel computing will challenge parallel
 performance technology 
 Must deal with diversity in hardware and software 
 Must deal with richer parallelism and concurrency 

 Performance tools should support parallel execution and
 computation models 
 Understanding of “performance” interactions 

 between integrated components 
 control and data interactions 

 Might not be able to see full parallel (concurrent) detail 
 Need to support multiple performance perspectives 

 Layers of performance abstraction 

40 


