
Allen D. Malony, Sameer Shende, Shangkar Mayanglambam,
Scott Biersdorff, Wyatt Spear

{malony,sameer, smeitei,scottb,wspear}@cs.uoregon.edu

Computer and Information Science Department
Performance Research Laboratory

University of Oregon

Performance Measurement and Analysis of
Heterogeneous Parallel Systems:

Tasks and GPU Accelerators

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Outline

 What’s all this about heterogeneous systems?
 Heterogeneity and performance tools
 Beating up on TAU
 Task performance abstraction and good ‘ol master/worker
 What’s all this about GPGPU’s?

 Accelerator performance measurement in PGI compiler
 TAU CUDA performance measurement

 Final thoughts

2

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Heterogeneous Parallel Systems

 What does it mean to be heterogenous?
 New Oxford America, 2nd Edition:

 diverse in character or content
 Prof. Dr. Felix Wolf, Sage of Research Centre Juelich:

 not homogeneous
 Diversity in what?

 Hardware
 processors/cores, memory, interconnection, …
 different in computing elements and how they are used

 Software (hybrid)
 how the hardware is programmed
 different software models, libraries, frameworks, …

 Diversity when? Heterogeneous implies combining together
3

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Why Do We Care?

 Heterogeneity has been around for a long time
 Have different programmable components in computer systems
 Long history of specialized hardware

 Heterogeneous (computing) technology more accessible
 Multicore processors
 Manycore accelerators (e.g., NVIDIA Tesla GPU)
 High-performance processing engines (e.g., IBM Cell BE)

 Performance is the main driving concern
 Heterogeneity is arguably the only path to extreme scale

 Heterogeneous (hybrid) software technology required
 Greater performance enables more powerful software

 Will give rise to more sophisticated software environments
4

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Implications for Performance Tools

 Tools should support parallel computation models
 Current status quo is comfortable

 Mostly homogeneous parallel systems and software
 Shared-memory multithreading – OpenMP
 Distributed-memory message passing – MPI

 Parallel computational models are relatively stable (simple)
 Corresponding performance models are relatively tractable
 Parallel performance tools are just keeping up

 Heterogeneity creates richer computational potential
 Results in greater performance diversity and complexity

 Performance tools have to support richer computation models
 and broader (less constrained) performance perspectives

5

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Current TAU Performance Perspective

 TAU is a direct measurement performance systems
 Event stack performance perspective for “threads of execution”
 Message communication performance

 TAU measures two general types of events
 Interval event: coupled begin and end events
 Atomic events

 TAU also maintains an event stack during execution
 Events can be nested
 Top of event stack the event context
 Used to generate callpath performance measurements
 Events can not overlap! (TAU enforces this requirement)

 What about events that are not event stack compatible?
6

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

MPI and Performance View

 TAU measures MPI events through the MPI interface
 Standard PMPI approach (same as other tools)
 Performance for interval events plus metadata

 Consider a paired message send/receive between P1 and P2
 Suppose we want to measure the time on P1 from:

 when P1 sends a message to P2
  to when P1 receives a message from P2

 TAU MPI events will not do this
 Can create a TAU user-level interval event (s-r)

  s-r begin and s-r end must have the same event context
 no other events can overlap (nested events are ok)

 What if these requirements can not be maintained?

7

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Conflicting Contexts in Send-Receive MPI Scenario

8

Context a

Context b

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Supporting Multiple Performance Perspectives

 Need to support alternative performance views
 Reflect execution logic beyond standard actions
 Capture performance semantics at multiple levels
 Allow for compatible perspectives that do not conflict

 TAU event stack (nesting) perspective somewhat limited
 TAU’s performance mapping can partially address need
 Some frameworks have own performance (timing) packages

 Cactus, SAMRAI, PETSc, Charm++
 Want to leverage/integrate/layer on TAU infrastructure

 Need also to incorporate views of external performance

9

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

TAU ProfilerCreate API

 Exposes TAU measurement infrastructure
 Software packages can easily access TAU profiler objects

 Control completely determined by package
 Can use to translate performance measures
 Can access and set any part of the profiler information

 Goal of simplicity
 API had to be easy to integrate in existing packages!

 Allows for multiple, layered performance measurements
 Simultaneous to TAU (internal) measurement system

10

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

ProfilerCreate API

11

#include <TAU.h>

//TAU_PROFILER_CREATE(void *ptr, char *name, char *type,
 TauGroup_t tau_group);

TAU_PROFILER_CREATE(ptr, “main”, “int (int, char**)”,
 TAU_USER);

TAU_PROFILER_START(ptr);
// work
TAU_PROFILER_STOP(ptr);

#include <TAU.h>

TAU_PROFILER_GET_INCLUSIVE_VALUES(handle, data)
TAU_PROFILER_GET_EXCLUSIVE_VALUES(handle, data)
TAU_PROFILER_GET_CALLS(handle, data)
TAU_PROFILER_GET_CHILD_CALLS(handle, data)
TAU_PROFILER_GET_COUNTER_INFO(counters, numcounters)

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Use of TAU ProfilerCreate API in Cactus

 Cactus has its own performance evaluation interface
 Developers prefer to use TAU’s interface
 Need a runtime performance assessment interface
 Layered Cactus API on top of new ProfilerCreate API
 Created a TAU scoping profiler for capturing top-level

 performance event (equivalent to main)

12

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Cactus Performance (Full Profile)

 Events under Cactus control
 Use TAU to capture timing and hardware measures

13

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Performance Views of External Execution

 Heterogeneous applications can have concurrent execution
 Main “host” path and “external” external paths
 Want to capture performance for all execution paths
 External execution may be difficult or impossible to measure

 “Host” creates measurement view for external entity
 Maintains local and remote performance data
 External entity may provide performance data to the host

 What perspective does the host have of the external entity?
 Determines the semantics of the measurement data

 Consider the “task” abstraction

14

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Task-based Performance Views
 Host regards external execution as a task

 Tasks operate concurrently with respect to the host
 Requires support for tracking asynchronous execution

 Host keeps measurements for external task
 Host-side measurements of task events
 Performance data received external task
 Tasks may have limited measurement support
 May depend on host for performance data I/O

 Need an task performance API
 Capture abstract (host-side) task events
 Populate TAU’s performance data structures for task
 Derived from ProfilerCreate API to address these concerns

15

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

TAU Task API

16

#include <TAU.h>

TAU_CREATE_TASK(taskid);

//TAU_PROFILER_CREATE(void *ptr, char *name, char *type,
 TauGroup_t tau_group);

TAU_PROFILER_CREATE(ptr, “main”, “int (int, char**)”,
 TAU_USER);

TAU_PROFILER_START_TASK(ptr, taskid);
// work
TAU_PROFILER_STOP_TASK(ptr, taskid);

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

TAU Task API (2)

17

#include <TAU.h>

TAU_PROFILER_GET_INCLUSIVE_VALUES_TASK(ptr, data, taskid);
TAU_PROFILER_SET_INCLUSIVE_VALUES_TASK(ptr, data, taskid);

TAU_PROFILER_GET_EXCLUSIVE_VALUES_TASK(ptr, data, taskid);
TAU_PROFILER_SET_EXCLUSIVE_VALUES_TASK(ptr, data, taskid);

TAU_PROFILER_GET_CALLS_TASK(ptr, data, taskid);
TAU_PROFILER_SET_CALLS_TASK(ptr, data, taskid);

TAU_PROFILER_GET_CHILD_CALLS_TASK(ptr, data, taskid);
TAU_PROFILER_SET_CHILD_CALLS_TASK(ptr, data, taskid);

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Master-Worker Scenario with TAU Task API

 Master sends tasks to N workers
 Workers report back their performance to master

 Done for each piece of work
 Build a worker performance

perspective in the master
 TAU will only output a performance

profile from the master
 Each work task will appear as a separate “thread” of the master

 In general, the external performance data can be arbitrary
 Single time value
 More complete representation of external performance

18

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Master-Worker with Task API: 32 Workers

19

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

CPU – GPU Execution Scenarios

20

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

PGI Compiler for GPUs

 Accelerator programming support
 Fortran and C
 Directive-based programming
 Loop parallelization for acceleration on GPUs
 PGI 9.0 for x64-based Linux (preview release)

 Compiled program
 CUDA target
 Synchronous accelerator operations

 Profile interface support

21

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

TAU with PGI Accelerator Compiler

 Supports compiler-based instrumentation for PGI compilers
 Track runtime system events as seen from the host processor
 Show source information associated with events

 Routine name
 File name, source line number for kernel
 Variable names in memory upload, download operations
 Grid sizes

 Any configuration of TAU with PGI supports tracking of
 accelerator operations
 Tested with PGI 8.0.3, 8.0.5, 8.0.6 compilers
 Qualification and testing with PGI 9.0-1 complete

22

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009 23

Wrapping PGI Accelerator Runtime System Calls

 Wrapping performed using performance interface
 Append “_p” to runtime calls of interest to measure

 Provided in calls for:
 Init
 Launching kernels (synchronous execution)
 Upload and download

void __pgi_cu_module_p(void *image);
void __pgi_cu_module(void *image) {
 TAU_PROFILE("__pgi_cu_module","",TAU_DEFAULT);
 __pgi_cu_module_p(image);
}

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

PGI Accelerator Runtime Measurement API

__pgi_cu_sync
__pgi_cu_fini
__pgi_cu_module
__pgi_cu_module_function
__pgi_cu_module_file
__pgi_cu_module_unload
__pgi_cu_paramset
__pgi_cu_launch
__pgi_cu_free
cuda_deviceptr __pgi_cu_alloc

__pgi_cu_download
__pgi_cu_download1
__pgi_cu_download2
__pgi_cu_download3
__pgi_cu_downloadp
__pgi_cu_upload
__pgi_cu_upload1
__pgi_cu_upload2
__pgi_cu_upload3
__pgi_cu_uploadc
__pgi_cu_uploadn

24

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Matrix Multiply (MM) Example

 Test with simple
matrix multiply

 Vary the matrix
sizes

 Demonstrate TAU
integration

25

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Build with Compiler-based Instrumentation

26

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009 27

MM Profile (3000 x 3000, ~22 Gflops)

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

MM Program on Different Array Sizes

 Parameter study of MM to evaluate GPU
 Array sizes: 100, 500, 1000, 2000, 5000
 10 iterations
 Results uploaded

to performance
database

 Want to observe
the effects on
PGI accelerator
runtime routines
 __pgi_cu_launch

28

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

MM Callpath Profiling – Tree Table View

29

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

MM Array Size Comparison with PerfExplorer

 Show effects of array size variation (log scale)
 Init is significant,

but constant
 Launch grows with

size because of
computation

 Upload and
download do also,
as determined by
algorithm

30

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

MM Trace View with Jumpshot

31

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

CUDA Programming for GPGPU

 PGI compiler represents GPGPU programming abstraction
 Performance tool uses runtime system wrappers

 essentially a synchronous call performance model!!!
 In general, programming of GPGPU devices is more complex
 CUDA environment

 Programming of multiple streams and GPU devices
 multiple streams execute concurrently

 Programming of data transfers to/from GPU device
 Programming of GPU kernel code
 Synchronization with streams
 Stream event interface
 CUDA profiling tool

32

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

CPU – GPU Execution Scenarios

33

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

TAU CUDA Performance Measurement

34

 Build on CUDA event interface
 Allow “events” to be placed in streams and processed

 events are timestamped
 CUDA runtime reports GPU timing in event structure
 Events are reported back to CPU when requested

 use begin and end events to calculate intervals
 Want to associate TAU event context with CUDA events

 Get top of TAU event stack at begin
 CUDA kernel invocations are asynchronous

 CPU does not see actual CUDA “end” event
 CPU retrieves events in a non-blocking and blocking manner

 Want to capture “waiting time”

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

TAU CUDA Measurement API
void tau_cuda_init(int argc, char **argv);

 To be called when the application starts
  Initializes data structures and checks GPU status

void tau_cuda_exit()
 To be called before any thread exits at end of application
 All the CUDA profile data output for each thread of execution

void* tau_cuda_stream_begin(char *event, cudaStream_t stream);
 Called before CUDA statements to be measured
 Returns handle which should be used in the end call
  If event is new or the TAU context is new for the event, a new

CUDA event profile object is created
void tau_cuda_stream_end(void * handle);

 Called immediately after CUDA statements to be measured
 Handle identifies the stream
  Inserts a CUDA event into the stream

35

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

TAU CUDA Measurement API (2)
vector<Event> tau_cuda_update();

 Checks for completed CUDA events on all streams
 Non-blocking and returns # completed on each stream

int tau_cuda_update(cudaStream_t stream);
 Same as tau_cuda_update() except for a particular stream
 Non-blocking and returns # completed on the stream

vector<Event> tau_cuda_finalize();
 Waits for all CUDA events to complete on all streams
 Blocking and returns # completed on each stream

int tau_cuda_finalize(cudaStream_t stream);
 Same as tau_cuda_finalize() except for a particular stream
 Blocking and returns # completed on the stream

36

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Scenario Results – One and Two Streams

 Run simple CUDA experiments to test TAU CUDA
 Tesla S1070 test system

37

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Scenario Results – Two Devices, Two Contexts

38

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

TAU CUDA in NAMD

 TAU integrated in Charm++ (another talk)
 NAMD is a molecular dynamics application using Charm++
 NAMD has been accelerated with CUDA
 Test out TAU CUDA with NAMD

 Two processes with one Tesla GPU for each

39

CPU profile

GPU profile (P0)

GPU profile (P1)

Performance Measurement and Analysis of Heterogeneous Parallel Systems DOE CSCaDS 2009

Conclusions

 Heterogeneous parallel computing will challenge parallel
 performance technology
 Must deal with diversity in hardware and software
 Must deal with richer parallelism and concurrency

 Performance tools should support parallel execution and
 computation models
 Understanding of “performance” interactions

 between integrated components
 control and data interactions

 Might not be able to see full parallel (concurrent) detail
 Need to support multiple performance perspectives

 Layers of performance abstraction

40

