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What This Talk Covers

• HPCToolkit applied to Important Applications on Leadership 
Class Machines
— Includes a short demo

• HPCToolkit Stack Unwinding Technology

• Libmonitor

• Acceptance tests for sampling-based performance tools
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Leadership Machines and Important Apps
• Machines

— Jaguar
— Cray XT4/XT5
— National Center for Computational Science @ ORNL

— Intrepid
— BlueGene/P
— Argonne National Lab

— Both systems over 160,000 nodes

• Applications
— MILC

— Lattice Gauge Quantum Chomodynamics
— Weak scaling study on both Jaguar an Intrepid

— FLASH
— Astrophysics thermonuclear flashes
— Weak scaling on both Jaguar
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Important Applications (cont)
— PFLOTRAN

— Multiphase, reactive flow
— Jaguar only
— Strong scaling
— Node performance via multiple metrics
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Time Out ... Short Demo

• PFLOTRAN node performance

• FLASH weak scaling
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hpcrun Unwind High Points

• Unwinder improved

• Unwinder has validation mode

• Implementations for:
—x86-64
—PowerPC (BG/P)
—MIPS (SiCortex)
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Unwinding for hpcrun

• Must work on optimized code
— “frameless” procedures
— other non-standard prolog/epilog

• Compute all unwind information @ runtime
— Will work with dynamically loaded code 
— No user maintenance burden

• Fast
— Lazy: compute unwind info only when actually sampled

(cache unwind info, so computed only once)
— No serious control flow analysis

• But ...
— We don’t have to be perfect!
— As long as common contexts unwind properly, dropping a rare 

sample is acceptable 8



Unwinding Methods

• 2 fundamental queries in unwinding:
— Are there any more call frames? [ unwind end ]

– hpcrun uses libmonitor for this
— Given an address A, and calling context C:  [unwind step]

– what (A’,C’) pair gave rise to (A,C) ?
(what is the next step in the unwind ?)

• Unwind step uses a recipe (= function of address&state)
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100: mov rax, rbx

RA = *(sp + 20)
sp = *(sp + 21)

2000: mov rax, rbx

RA = *(bp)
bp = *(bp + 1) 



General Unwinding: Computing Recipes

• Fundamental problem for unwind stepping is computing 
recipes.

• Key concept: use binary analysis of instructions

• Conceptual Algorithm
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Given address A
Compute RStart,REnd, the bounds of the routine containing A
// At RStart, rtn address on top of “stack”, context is known
For a in [RStart, REnd]
    analyze instruction @ a.
    compute recipe for a based on instruction semantics
      and previous recipes
      //  prev recipe: RA = *(sp)
      // 100: push rax
      //  recipe(100) ==> RA = *(sp+1)



Computing Recipes: hpcrun

• General unwind recipe computation:
—Requires A LOT of state ==> so impractical

• So, what is minimum state that will (mostly) work?
—Just bp (=”frame pointer”)

– samples in prologs, epilogs FAIL
– routines that don’t use bp FAIL (miss a frame)
– routines that use bp as a scratch register FAIL

—Just sp
– alloca or variable size local data FAIL

! pg implementation of alloca is a side effecting function !

• hpcrun tracks both bp & sp.
—each recipe tracks ra, bp, sp and which of bp or sp to use.
—for standard frames, we try bp first, and then sp if bp recipe fails
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Computing Recipes: hpcrun (cont.)

• Routines with 1 epilog are relatively easy.

• Multiple epilogs, absent control flow analysis, require good 
heuristics
—When a ret, indirect jmp, or tail call jmp is encountered, what 

recipe should the following instruction use as a basis?
– hpcrun selects one of the previously encountered recipes as a

canonical frame

• Canonical frame heuristic
—If there is a previous recipe that uses bp to compute ra
—Find the recipe (using sp to compute ra) with the largest offset

(usually means frame is completely built)

• In addition:
—If ret is encountered, RA recipe should be *(sp).

If not, fixup all recipes from canonical frame choice to ret
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Computing Procedure Bounds
• Computing unwind recipes requires correct function bounds

— libraries are frequently partially stripped
— math, communication, system

— one bad unwind step ruins the porridge

• Our approach
— only needs to be good enough to support unwinding
— fast: use linear scan

• Heuristics to recover procedures in partially stripped code
— key observation

— some errors are tolerable
 – extend function-end to include data

— some errors are NOT tolerable
 – clip the prolog
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Computing Procedure Bounds (cont.)
• Assumption: All procedures are contiguous

— Not true: hot/cold path splitting
Prefer to infer 2 procedures, and make the unwind more 
complicated

• Extract initial procedure information from load module 
(Thanks, SymtabAPI)
— Global symbols are NON-removable candidates
— Local symbols are still removable

• Linear scan through code looking for removable candidates
— Address following a non-local branch (ret, uncond br)
— Address after a call IFF it is a canonical function prolog

• Also, during the linear scan, look for instructions that cause 
the removal of removable candidates

• Remaining candidates are the function starts
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Heuristics for Removing Candidates
• If a conditional branch to t occurs @ address a:

— The interval between a and t is a protected interval
• a < t ==> [a,t’) is protected
• a > t ==> [t, a’) is protected

— All removable candidates are removed from protected interval, 
no removable candidates are generated in a protected interval.

• An unconditional backward branch @ addr a into a protected 
interval [s,e) extends interval to [s,a’)

• Increment sp by L @ addr a, with corresponding decr by L at 
e1, en makes [a, max(e)’) protected

• Interval between mov bp,sp and mov sp,bp is protected

• Interval between push bp and pop bp is protected
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Unwinding Split Procedures
• IF

— Last instruction of procedure R is jmp T
— Instruction just before T @ location pre(T) is jmp begin(R)

• THEN
— Use recipe @ pre(T) as the starting point for R
— Recompute all R recipes
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So, How Well Does It Work?
• For PFLOTRAN

—  148 unwind failures out of 289M unwinds
(8192 Processors)

• For our Spec benchmark test suite, compiled with Intel, PGI, 
and Pathscale
— 292 unwind failures out of 18M unwinds
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Validating Unwinds
• It is conceivable that an unwind could succeed, but not be 

correct.

• So, hpcrun can now (partially) validate unwind steps
— Preliminary attempt
— Expensive, so not for production runs.
— Unwind steps are classified as:

• Confirmed
• Probable
• Wrong
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Verifying Call Stack Unwinds 
• Prove an unwind step (f@callsite-x → g) is possible 

— “Confirmed”
• direct calls: fx → g 
• dynamically linked: fx → [program-linkage-table] → g
• tail calls (1 level): fx → h [tail call] ↦ g

— “Probable”
• indirect calls (dynamic dispatch)

 – improvement: use self-modifying code to confirm at runtime
• tail calls (≥ 2 levels)

— “Fails” 

• Results for SPEC / ‘train’ input / base + peak / Pathscale
— confirmed:  7611192 indirect:  2525510 tail:     4175 wrong:    1
— ~59% of runs: ≥ 95% confirmed steps, 0 failures
— ~78% of runs: ≥ 90% confirmed steps, 0 failures
— rest of the runs: 14-65% probable steps

•  mostly indirect calls; a few tail calls; 1 failure [?]
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What is libmonitor?

• libmonitor is a component in the form of a library that gives 
access to various events of the program

• The API is via callbacks for the various events

• libmonitor gets access to the events via LD_PRELOAD

• hpcrun uses the monitor component extensively
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Process startup:
Monitor provides monitor_init_process callback

void *
monitor_init_process(int *,char **,void *)
{
    start_samples();
}



What is new in libmonitor?

• Generic support for MPI.
— This allows one monitor implementation to work with most any 

MPI implementation.
— Downside: MPI comm size/rank is not known until the 

application calls MPI_Comm_rank().

• Overrides for the PMPI_* functions
— catch MPI functions with applications that are linked with a 

profiling library (e.g. jumpshot)

• Some bug fixes
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Acceptance Tests for Sampling

• Sampling-based tools are good stress test for system 
hardware/software

• As we deploy HPCToolkit on various leadership class 
machines, we are collecting a set of acceptance tests that 
check out systemic features that support/enable sampling-
based profiling.
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Current Acceptance Tests
• sigaction returns full and correct context

• (supplied) PAPI implementation supports the sampling mode

• Sampling works with multiple threads

• Sampling is handled properly across fork/exec

• Nested signal handlers work
—  sigsegv inside a sigprof

• Signal handlers must properly restore the mask for blocked 
signals

• itimer with ITIMER_PROF in one-shot mode delivers the wrong 
signal

• Various perfctr bugs on specific Intel models

• mmap can be performed inside a signal handler

23


