
HPCTookit Update 2009

John Mellor-Crummey
Nathan Tallent
Mark Krentel

Laksono Adhianto
Mike Fagan

Rice University
CSCADS 2009

hpctoolkit.org

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
databasepresentation

[hpcviewer]

program
structure

HPCToolkit Performance Tools

What This Talk Covers

• HPCToolkit applied to Important Applications on Leadership
Class Machines
— Includes a short demo

• HPCToolkit Stack Unwinding Technology

• Libmonitor

• Acceptance tests for sampling-based performance tools

3

Leadership Machines and Important Apps
• Machines

— Jaguar
— Cray XT4/XT5
— National Center for Computational Science @ ORNL

— Intrepid
— BlueGene/P
— Argonne National Lab

— Both systems over 160,000 nodes

• Applications
— MILC

— Lattice Gauge Quantum Chomodynamics
— Weak scaling study on both Jaguar an Intrepid

— FLASH
— Astrophysics thermonuclear flashes
— Weak scaling on both Jaguar

4

Important Applications (cont)
— PFLOTRAN

— Multiphase, reactive flow
— Jaguar only
— Strong scaling
— Node performance via multiple metrics

5

Time Out ... Short Demo

• PFLOTRAN node performance

• FLASH weak scaling

6

hpcrun Unwind High Points

• Unwinder improved

• Unwinder has validation mode

• Implementations for:
—x86-64
—PowerPC (BG/P)
—MIPS (SiCortex)

7

Unwinding for hpcrun

• Must work on optimized code
— “frameless” procedures
— other non-standard prolog/epilog

• Compute all unwind information @ runtime
— Will work with dynamically loaded code
— No user maintenance burden

• Fast
— Lazy: compute unwind info only when actually sampled

(cache unwind info, so computed only once)
— No serious control flow analysis

• But ...
— We don’t have to be perfect!
— As long as common contexts unwind properly, dropping a rare

sample is acceptable 8

Unwinding Methods

• 2 fundamental queries in unwinding:
— Are there any more call frames? [unwind end]

– hpcrun uses libmonitor for this
— Given an address A, and calling context C: [unwind step]

– what (A’,C’) pair gave rise to (A,C) ?
(what is the next step in the unwind ?)

• Unwind step uses a recipe (= function of address&state)

9

100: mov rax, rbx

RA = *(sp + 20)
sp = *(sp + 21)

2000: mov rax, rbx

RA = *(bp)
bp = *(bp + 1)

General Unwinding: Computing Recipes

• Fundamental problem for unwind stepping is computing
recipes.

• Key concept: use binary analysis of instructions

• Conceptual Algorithm

10

Given address A
Compute RStart,REnd, the bounds of the routine containing A
// At RStart, rtn address on top of “stack”, context is known
For a in [RStart, REnd]
 analyze instruction @ a.
 compute recipe for a based on instruction semantics
 and previous recipes
 // prev recipe: RA = *(sp)
 // 100: push rax
 // recipe(100) ==> RA = *(sp+1)

Computing Recipes: hpcrun

• General unwind recipe computation:
—Requires A LOT of state ==> so impractical

• So, what is minimum state that will (mostly) work?
—Just bp (=”frame pointer”)

– samples in prologs, epilogs FAIL
– routines that don’t use bp FAIL (miss a frame)
– routines that use bp as a scratch register FAIL

—Just sp
– alloca or variable size local data FAIL

! pg implementation of alloca is a side effecting function !

• hpcrun tracks both bp & sp.
—each recipe tracks ra, bp, sp and which of bp or sp to use.
—for standard frames, we try bp first, and then sp if bp recipe fails

11

Computing Recipes: hpcrun (cont.)

• Routines with 1 epilog are relatively easy.

• Multiple epilogs, absent control flow analysis, require good
heuristics
—When a ret, indirect jmp, or tail call jmp is encountered, what

recipe should the following instruction use as a basis?
– hpcrun selects one of the previously encountered recipes as a

canonical frame

• Canonical frame heuristic
—If there is a previous recipe that uses bp to compute ra
—Find the recipe (using sp to compute ra) with the largest offset

(usually means frame is completely built)

• In addition:
—If ret is encountered, RA recipe should be *(sp).

If not, fixup all recipes from canonical frame choice to ret
12

Computing Procedure Bounds
• Computing unwind recipes requires correct function bounds

— libraries are frequently partially stripped
— math, communication, system

— one bad unwind step ruins the porridge

• Our approach
— only needs to be good enough to support unwinding
— fast: use linear scan

• Heuristics to recover procedures in partially stripped code
— key observation

— some errors are tolerable
 – extend function-end to include data

— some errors are NOT tolerable
 – clip the prolog

13

Computing Procedure Bounds (cont.)
• Assumption: All procedures are contiguous

— Not true: hot/cold path splitting
Prefer to infer 2 procedures, and make the unwind more
complicated

• Extract initial procedure information from load module
(Thanks, SymtabAPI)
— Global symbols are NON-removable candidates
— Local symbols are still removable

• Linear scan through code looking for removable candidates
— Address following a non-local branch (ret, uncond br)
— Address after a call IFF it is a canonical function prolog

• Also, during the linear scan, look for instructions that cause
the removal of removable candidates

• Remaining candidates are the function starts

14

Heuristics for Removing Candidates
• If a conditional branch to t occurs @ address a:

— The interval between a and t is a protected interval
• a < t ==> [a,t’) is protected
• a > t ==> [t, a’) is protected

— All removable candidates are removed from protected interval,
no removable candidates are generated in a protected interval.

• An unconditional backward branch @ addr a into a protected
interval [s,e) extends interval to [s,a’)

• Increment sp by L @ addr a, with corresponding decr by L at
e1, en makes [a, max(e)’) protected

• Interval between mov bp,sp and mov sp,bp is protected

• Interval between push bp and pop bp is protected

15

Unwinding Split Procedures
• IF

— Last instruction of procedure R is jmp T
— Instruction just before T @ location pre(T) is jmp begin(R)

• THEN
— Use recipe @ pre(T) as the starting point for R
— Recompute all R recipes

16

So, How Well Does It Work?
• For PFLOTRAN

— 148 unwind failures out of 289M unwinds
(8192 Processors)

• For our Spec benchmark test suite, compiled with Intel, PGI,
and Pathscale
— 292 unwind failures out of 18M unwinds

17

Validating Unwinds
• It is conceivable that an unwind could succeed, but not be

correct.

• So, hpcrun can now (partially) validate unwind steps
— Preliminary attempt
— Expensive, so not for production runs.
— Unwind steps are classified as:

• Confirmed
• Probable
• Wrong

18

Verifying Call Stack Unwinds
• Prove an unwind step (f@callsite-x → g) is possible

— “Confirmed”
• direct calls: fx → g
• dynamically linked: fx → [program-linkage-table] → g
• tail calls (1 level): fx → h [tail call] ↦ g

— “Probable”
• indirect calls (dynamic dispatch)

 – improvement: use self-modifying code to confirm at runtime
• tail calls (≥ 2 levels)

— “Fails”

• Results for SPEC / ‘train’ input / base + peak / Pathscale
— confirmed: 7611192 indirect: 2525510 tail: 4175 wrong: 1
— ~59% of runs: ≥ 95% confirmed steps, 0 failures
— ~78% of runs: ≥ 90% confirmed steps, 0 failures
— rest of the runs: 14-65% probable steps

• mostly indirect calls; a few tail calls; 1 failure [?]
19

What is libmonitor?

• libmonitor is a component in the form of a library that gives
access to various events of the program

• The API is via callbacks for the various events

• libmonitor gets access to the events via LD_PRELOAD

• hpcrun uses the monitor component extensively

20

Process startup:
Monitor provides monitor_init_process callback

void *
monitor_init_process(int *,char **,void *)
{
 start_samples();
}

What is new in libmonitor?

• Generic support for MPI.
— This allows one monitor implementation to work with most any

MPI implementation.
— Downside: MPI comm size/rank is not known until the

application calls MPI_Comm_rank().

• Overrides for the PMPI_* functions
— catch MPI functions with applications that are linked with a

profiling library (e.g. jumpshot)

• Some bug fixes

21

Acceptance Tests for Sampling

• Sampling-based tools are good stress test for system
hardware/software

• As we deploy HPCToolkit on various leadership class
machines, we are collecting a set of acceptance tests that
check out systemic features that support/enable sampling-
based profiling.

22

Current Acceptance Tests
• sigaction returns full and correct context

• (supplied) PAPI implementation supports the sampling mode

• Sampling works with multiple threads

• Sampling is handled properly across fork/exec

• Nested signal handlers work
— sigsegv inside a sigprof

• Signal handlers must properly restore the mask for blocked
signals

• itimer with ITIMER_PROF in one-shot mode delivers the wrong
signal

• Various perfctr bugs on specific Intel models

• mmap can be performed inside a signal handler

23

