
Building a Community Infrastructure for Scalable On-Line

Performance Analysis Tools

Building a Community Infrastructure for
Scalable On-Line Performance Analysis

Tools

Jim Galarowicz, Krell Institute

Dave Montoya, LANL

7/21/2009CScADS WorkShop 2009

1

Building a Community Infrastructure for Scalable On-Line

Performance Analysis Tools

Wouldn’t if be advantageous to our users

if we could more easily create tools

from all the great work/research

being done in our community?

7/21/2009CScADS WorkShop 2009

2

Building a Community Infrastructure for Scalable On-Line

Performance Analysis Tools

If we could create components

that could be shared

we could tailor the solution

to the user problem and

the environment they are running in.

7/21/2009CScADS WorkShop 2009

3

Building a Community Infrastructure for Scalable On-Line

Performance Analysis Tools

Agenda:

• Team

• Project overview

• Enabling an Open Community Infrastructure

• Open Interfaces acceptable across community

• Mechanisms for Constraint and Dependency
Recognition and Tool Creation

7/21/2009CScADS WorkShop 2009

4

• Project Team
• Krell Institute

• University of Maryland

• University of Wisconsin

• Oak Ridge National Laboratory

• Lawrence Livermore National Laboratory

• Los Alamos National Laboratory

• Sandia National Laboratories

• Carnegie Mellon University

• Others welcome……

Project Team
Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

7/21/2009CScADS WorkShop 2009

5

• Objectives and Rationale

• Research Challenges

• Flexible Performance Tools Pipeline

• Creating a Performance Tools Pipeline

• Target Challenges

Agenda for OASCR/NNSA

Project Overview
Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

7/21/2009CScADS WorkShop 2009

6

Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

• Objectives:

• Create a toolbox of components for building high-level
end user tools and/or quickly build tool prototypes.

• Tools should be easily configurable/adjustable w/o
rebuilding.

• Able to mix components from several groups and/or
vendors. Everyone should be able to contribute and use
the new components.

• We would like contributors to define the interfaces with
us so that we can share components later in both
directions.

Objectives and Rationale

7/21/2009CScADS WorkShop 2009

7

Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

• Rationale:

• Petascale environments need tool sets that are
flexible

• Need to quickly create new and specialized tools

• Better availability of tools across more platforms

• Avoid creating stove pipe tools

• Better support model because more groups are
involved with their own components?

Objectives and Rationale

7/21/2009CScADS WorkShop 2009

8

Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

• Research Challenges/Project Requirements:
• In general components must be designed for scale but

also have a need for generality.

• Must also support specialized tool components intended
for serial or small scale usage.

• Infrastructure must support online data aggregation
because of potentially high data volume at scale.

• Petascale machines are likely to have limited OS
capabilities requiring new and light-weight data
acquisition techniques.

• Must be able to efficiently store the performance data.

• Must be able to map any combination of tool
components to the target architecture.

Research Challenges

Project Requirements

7/21/2009

9

Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools Performance Analysis Pipeline

Data

Acquisition

Result

Presentation

Data

Collection

Experiment

Management

Command

Processing

Performance Analysis Pipeline

PAPI
Dyninst

MRNet
libMonitor

SQLite

QT 4
Python

Lean

Environment

Collectors

Tree-based

Aggregation

GUI

Python

Module

Batch

Processing

Panel Plugin

Aggr. Plugin

Distributed Storage

Experiment

Management

Analysis

Plugin

CLI Parser

View Plugin

Profilers

Tracers

Collector Plugin

Collector Plugin

Babel
Python

Compute Nodes  I/O Nodes  Support Nodes  Front-end Nodes  Desktop

U
s
e

r A
c
c
e

s
s

P
a

ra
lle

l T
a

rg
e

t A
p

p
lic

a
tio

n

10

Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

• Performance Tools Pipeline
• Work closely with tools community and application teams sharing

ideas and feedback, as well as sharing components.

• Specify the components interactions with other components.

• Allows others to add or replace components.

• Integrate components into their tools

• Customize existing solutions.

• Note: The presented option is one that we think makes
sense, but we are willing to change it to match other tools.

Performance Tools Pipeline

7/21/2009CScADS WorkShop 2009

11

Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

• Creating a first Performance Tools Pipeline prototype
• Start with Open|SpeedShop components as one set of examples

for such an infrastructure.

• Decompose core components into general building blocks.

• Arrange building blocks into a logical performance analysis
pipeline.

• Allows users and tool builders to select individual components
for each pipeline stage.

• Supports a flexible mapping onto the target architecture which
provides efficient execution and visualization (incl. remote
operation) environments.

Performance Tools Pipeline

7/21/2009CScADS WorkShop 2009

12

Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools Target Challenges

Target Challenges
• Scalability

• Data Collection and Aggregation

• Novel Data Acquisition Techniques

• Distributed Performance Data Storage

• Mapping the Application to the Architecture

• Open Interfaces

7/21/2009CScADS WorkShop 2009

13

• Creating Open Community Components

• Design Approaches

• Subsystems plug-in structure

• Initial analysis diagram

• Would welcome your input on the interface design

Agenda for Component Discussion
Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

7/21/2009CScADS WorkShop 2009

14

• Identify appropriate interface points

• Define interface point behavior / constraints

• Assess usage scenarios that address

• Challenges

• Tool integration

• Focus on flexibility and sustainability

• Design support for frameworks - CMU team

Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools Design Approaches

7/21/2009CScADS WorkShop 2009

15

Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools Performance Analysis Pipeline

Data

Acquisition

Result

Presentation

Data

Collection

Experiment

Management

Command

Processing

Performance Analysis Pipeline

PAPI
Dyninst

MRNet
libMonitor

SQLite

QT 4
Python

Lean

Environment

Collectors

Tree-based

Aggregation

GUI

Python

Module

Batch

Processing

Panel Plugin

Aggr. Plugin

Distributed Storage

Experiment

Management

Analysis

Plugin

CLI Parser

View Plugin

Profilers

Tracers

Collector Plugin

Collector Plugin

Babel
Python

Compute Nodes  I/O Nodes Support Nodes Front-end Nodes Desktop

U
s
e
r A

c
c
e
s
s

P
a
ra

lle
l T

a
rg

e
t A

p
p
lic

a
tio

n

16

Collector
-Usertime

-Pcsamp

-Loba-mpi

-etc

Transport
-MRNet

-File –IO

-etc

Instrumentor
-Dyninst

-LD_Preload

-etc

File IO format
-UDM

-SionLib

-Sqlite

-XML

-ASCII text

-etc.

Data Schema
-Usertime

-Pcsamp

-Loba-mpi

-etc

Interface
-Command Line

-GUI

-Management

-etc.

Attributes
-Behaviors

-Dependencies

-etc

Attributes
-Behaviors

-Dependencies

-etc

Attributes
-Behaviors

-Dependencies

-etc

Attributes
-Behaviors

-Dependencies

-etc

Attributes
-Views / GUI

-Behaviors

-Dependencies

-Extensions

-etc

Behaviors:
Address commonality. All plug-ins for a

given system must have common behaviors

for them to work in unison. Do we have

different strands of behavior through the

system?

-Dynamic vs. pre-set

-Light-weight OS

Dependencies:
Address expectations. plug-ins for a given

sub-systems are expected to adhere to a

defined interface of what is provided by

compatible upstream sub-systems and what

they provide to downstream subsystems.

There are also specific constraints that are

defined by plug-ins that serve as service

providers at the various levels.

Example

Subsystems plug-in structure

Initial analysis diagram

For Discussion - Analysis of interface points

7/21/2009 CScADS WorkShop 200917

QUESTIONS and DISCUSSION

• Are the components in the pipeline at the correct

granularity?

• Any thoughts on approaches to defining interfaces?

• Which components would fit into this scenario?

• Which components would not fit and why?

• What can we do to help ensure more components will be

included?

Discussion
Building a Community Infrastructure for

Scalable On-Line Performance Analysis Tools

7/21/2009CScADS WorkShop 2009

18

