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Context

* Most parallel programs are written using either:
— Message passing with a SPMD model
« Usually for scientific applications with C++/Fortran
» Scales easily
— Shared memory with threads in OpenMP, Threads+C/C++/F or Java
« Usually for non-scientific applications
« Easier to program, but less scalable performance
» Global Address Space (GAS) Languages take the best of both
— global address space like threads (programmability)
— SPMD parallelism like MPI (performance)
— local/global distinction, i.e., layout matters (performance)
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Partitioned Global Address Space

Languages

« Explicitly-parallel programming model with SPMD parallelism
— Fixed at program start-up, typically 1 thread per processor
« Global address space model of memory
— Allows programmer to directly represent distributed data structures
« Address space is logically partitioned
— Local vs. remote memory (two-level hierarchy)
« Programmer control over performance critical decisions
— Data layout and communication
« Performance transparency and tunability are goals
— Initial implementation can use fine-grained shared memory
« Multiple PGAS languages: UPC (C), CAF (Fortran), Titanium (Java)
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 The languages share the global address space abstraction

— Shared memory is logically partitioned by processors

— Remote memory may stay remote: no automatic caching implied
— One-sided communication: reads/writes of shared variables

— Both individual and bulk memory copies

« Languages differ on details

— Some models have a separate private memory area

— Distributed array generality and how they are constructed
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State of PGAS Languages

« A successful language/library must run everywhere
- UPC
— Commercial compilers available on Cray, SGI, HP machines
— Open source compiler from LBNL/UCB (source-to-source)
— Open source gcc-based compiler from Intrepid
- CAF
— Commercial compiler available on Cray machines
— Open source compiler available from Rice
e Titanium
— Open source compiler from UCB runs on most machines
« Common tools
— Openb64 open source research compiler infrastructure
— ARMCI, GASNet for distributed memory implementations
— Pthreads, System V shared memory
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UPC Overview and Design

« Unified Parallel C (UPC) is:
— An explicit parallel extension of ANSI C
— A partitioned global address space language
— Sometimes called a GAS language

« Similar to the C language philosophy

— Programmers are clever and careful, and may need to get close to
hardware

 to get performance, but
e can getin trouble
— Concise and efficient syntax

« Common and familiar syntax and semantics for parallel C with simple
extensions to ANSI C

 Based on ideas in Split-C, AC, and PCP
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One-Sided vs. Two-Sided Messaging

two-sided message (e.g., MPI)

messageid | datapayload  |——

one-sided put (e.g., UPC)

Two-sided messaging
— Message does not contain information about final destination
— Have to perform look up at the target or do a rendezvous
— Point-to-point synchronization is implied with all transfers
One-sided messaging

— Message contains information about final destination
— Decouple synchronization from data movement

What does the network hardware support?
What about when we need point-to-point sync?
— Hold that thought...

network

interface

)\ . Berkeley UPC: http://upc.lbl.gov 7 D
’—'w Titanium: http://titanium.cs.berkeley.edu




GASNet Latency Performance

GASNet implemented on top of Deep
Computing Messaging Framework
(DCMF)

— Lower level than MPI

— Provides Puts, Gets, AMSend, and
Collectives
« Point-to-point ping-ack latency
performance

— N-byte transfer w/ 0 byte
acknowledgement

2 * GASNet takes advantage of
DCMF remote completion
1 notification

Sl e e w e m e e — Minimum semantics needed to
Q

dil MPI Send/Recv
GASNet (Get + sync)
GASNet (Put + sync)
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implement the UPC memory model

— Almost a factor of two difference until
32 bytes

— Indication of better semantic match to
underlying communication system
)\ |__\ Berkeley UPC: http://upc.lbl.gov 8 £ 3

1l

| \| Titanium: http:/titanium.cs.berkeley.edu




A
GASNet Multilink Bandwidth
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* Kumar et. al showed the
maximum achievable bandwidth
for DCMF transfers is 748 MB/s
per link so we use this as our peak
bandwidth

See “The deep computing
messaging framework: generalized
scalable message passing on the
blue gene/P supercomputer”,
Kumar et al. ICS08
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Each node has six 850MB/s*
bidirectional link

Vary number of links from 1 to 6

Initiate a series of nonblocking
puts on the links (round-robin)

— Communication/
communication overlap

Both MPIl and GASNet asymptote
to the same bandwidth

GASNet outperforms MPI at
midrange message sizes

— Lower software overhead
implies more efficient
message injection

— GASNet avoids rendezvous to
leverage RDMA




UPC (PGAS) Execution Model
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UPC Execution Model

A number of threads working independently in a SPMD fashion

— Number of threads specified at compile-time or run-time; available
as program variable THREADS

— MYTHREAD specifies thread index (0. . THREADS-1)
— upc_barrier is a global synchronization: all wait
— There is a form of parallel loop that we will see later
* There are two compilation modes
— Static Threads mode:
« THREADS is specified at compile time by the user
* The program may use THREADS as a compile-time constant
— Dynamic threads mode:
« Compiled code may be run with varying numbers of threads
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Hello World in UPC

* Any legal C program is also a legal UPC program

« If you compile and run it as UPC with P threads, it will run P
copies of the program.

« Using this fact, plus the identifiers from the previous slides, we can
parallel hello world:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main () {

printf ("Thread %d of %d: hello UPC world\n",
MYTHREAD, THREADS) ;
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Example: Monte Carlo Pi Calculation

- Estimate Pi by throwing darts at a unit square
« Calculate percentage that fall in the unit circle
— Area of square =r2 = 1
— Area of circle quadrant = % * w r2 = /4
« Randomly throw darts at x,y positions
« |If x2 +y2 <1, then point is inside circle
« Compute ratio:
— # points inside / # points total
— 1w =4%ratio

r=1

)\ . Berkeley UPC: http://upc.lbl.gov
’—'w Titanium: http:/titanium.cs.berkeley.edu




-]
Piin UPC

* Independent estimates of pi:
main (int argc, char **argv) {

int i, hits, trials = 0; Each thread gets its own copy
double pi; of these variables

if (argc !'= 2)trials = 1000000; Each thread can use input

else trials = atoi(argv[l]); arguments

Initialize random in math
library

srand (MYTHREAD*17) ;

for (i=0; i < trials; i++) hits += hit() ;
pi = 4.0*hits/trials;
printf ("PI estimated to %f.", pi);

} Each thread calls “hit” separately
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Helper Code for Pi in UPC

* Required includes:
#include <stdio.h>
#include <math.h>
#include <upc.h>

* Function to throw dart and calculate where it hits:
int hit() {
double x = ((double) rand()) / RAND MAX;
double y = ((double) rand()) / RAND MAX;
if ((x*x + y*y) <= 1.0) {
return(l) ;
} else {
return (0) ;
}
}
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Shared vs. Private Variables
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Private vs. Shared Variables in UPC

 Normal C variables and objects are allocated in the private memory
space for each thread.

« Shared variables are allocated only once, with thread O
shared int ours; // use sparingly: performance
int mine;
« Shared variables may not have dynamic lifetime: may not occur in a
in a function definition, except as static.

Thread, Thread, Thread,
(V)]
(V)]
o
T o ours: Shared
T O
© ©
Pz mine: mine: oo o mine:
O .
@) Private
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Pi in UPC: Shared Memory Style

« Parallel computing of pi, but with a bug

shared int hits; shared variable to record
main (int argc, char **argv) { hits

int i, my trials = 0;

int trials = atoi(argv([1l])
my trials = (trials + THREADS - 1)/THREADS;

srand (MYTHREAD*17) ; divide work up evenly
for (1i=0; i < my trials; i++)
hits += hit (), accumulate hits
upc_barrier;
if (MYTHREAD == 0) {
printf ("PI estimated to %$f£.", 4.0*hits/
trials) ;
1) What is the problem with this program?
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Shared Arrays Are Cyclic By Default

Shared scalars always live in thread 0
Shared arrays are spread over the threads
Shared array elements are spread across the threads
shared int x[THREADS] [* 1 element per thread */
shared int y[3] [THREADS] /* 3 elements per thread */
shared int z[3] [3] [* 2 or 3 elements per thread */
In the pictures below, assume THREADS =4
— Red elts have affinity to thread 0 Think of linearized C
< oo "
As a 2D arr IS
y . . . IoZiialIy Sloii,e)él by
5 . . [ columns

Z is not

A
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Pi in UPC: Shared Array Version

« Alternative fix to the race condition
 Have each thread update a separate counter:
— But do it in a shared array
— Have one thread compute sum all_hits is shared

shared int all hits [THREADS]; by all processors,
= just as hits was

main (int argc, char **argv) {
... declarations an initialization code omitted
for (1=0; i < my trials; i++)

all hits[MYTHREAD] += hit(); update element with
— local affinity

upc_barrier;

if (MYTHREAD == 0) {
for (i=0; i < THREADS; i++) hits += all hits[i];
printf ("PI estimated to %$f.", 4.0*hits/trials);
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Recap: Private vs. Shared Variables

in UPC

« We saw several kinds of variables in the pi example
— Private scalars (my hits)
— Shared scalars (hits)
— Shared arrays (all hits)

Thread, Thread, Thread,
where:
hits: n=Threads-1
0 hit lock:
N
o
8 @ || all hits[0]: all hits[1]: all hits[n]: Shared
G ©
— Q
8 » my hits: my hits: 000 my hits:
o - [l
O Private
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UPC Global Synchronization

 UPC has two basic forms of barriers:
— Barrier: block until all other threads arrive
upc_barrier
— Split-phase barriers
upc notify; this thread is ready for barrier
do computation unrelated to barrier
upc wait;  wait for others to be ready
« Optional labels allow for debugging
#define MERGE BARRIER 12
if (MYTHREAD%2 == 0) ({

upc _barrier MERGE BARRIER;
} else {

upc_barrier MERGE BARRIER;
}
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Collectives

UPC has support for many standard collectives (in latest language spec)

— Data Movement: Broadcast, Scatter, Gather, Allgather, Exchange (i.e.
Alltoall)

— Computational: Reductions and Prefix Reductions

Shared data semantics complicates when data is considered safe to read
or modify

Language lets user specify looser synchronization requirements (i.e.
when is source data readable by the collective or modifiable)

— Looser synchronization allows better implementation in runtime
— Loose (NO): Data will not be touched within the current barrier phase

— Medium (MY): Thread will not access remote data associated to
collective without point-to-point synchronization or a barrier

— Strict (All): Can access any and all data associated with a collective
without synchronization (i.e. handled w/in the collective)

— Defaults are to use “strict”

(AONers
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Pi in UPC: Data Parallel Style

 The previous version of Pi works, but is not scalable:
— On a large # of threads, the locked region will be a bottleneck

« Use areduction for better scalability

#include <bupc collectivev.h> Berkeley collectives
// no shared variables
main (int argc, char **argv) ({

for (i=0; i < my trials; i++)
my hits += hit();

my hits = // type, input, thread, op
bupc allv reduce(int, my hits, 0, UPC_ADD);

/! barrier implied by collective

if (MYTHREAD == 0)

printf ("PI: %f", 4.0*my hits/trials);}
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Work Distribution Using
upc forall
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Example: Vector Addition
- Questions about parallel vector additions:
- How to layout data (here it is cyclic)
- Which processor does what (here it is “owner computes”)

/* vadd.c */
#include <upc relaxed.h>
#define N 100*THREADS

cyclic layout

shared int v1[N], v2[N], sum[N];
void main() {
int 1i;
for (i=0; i<N; i++)
if (MYTHREAD == i$%$THREADS)
sum[i]=vl[i]+v2][i];

owner computes
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Work Sharing with upc_forall()

* The idiom in the previous slide is very common
— Loop over all; work on those owned by this proc

« UPC adds a special type of loop
upc_forall (init; test; loop; affinity)
statement;
« Programmer indicates the iterations are independent
— Undefined if there are dependencies across threads

» Affinity expression indicates which iterations to run on each thread. It may have
one of two types:

— Integer: af£inity%THREADS iS MYTHREAD
— Pointer: upc_threadof (affinity) is MYTHREAD
e Syntactic sugar for loop on previous slide

— Some compilers may do better than this, e.g.,
for (i=MYTHREAD; i<N; i+=THREADS)
— Rather than having all threads iterate N times:
for (i=0; i<N; i++) if (MYTHREAD == i%THREADS)

/*\ . Berkeley UPC: http://upc.lbl.gov
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Vector Addition with upc forall

* The vadd example can be rewritten as follows
« Equivalent code could use “ssum[1i]” for affinity

* The code would be correct but slow if the affinity
expression were i+1 rather than 1.
#define N 100*THREADS

The cyclic data

shared int v1[N], v2[N], sum[N]; distribution may
perform poorly on
void main () { some machines
int 1i;

upc_forall (i=0; i<N; i++; 1)

sum[i]=v1[i]+Vv2[i];
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Distributed Arrays in UPC
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Layouts in General

« All non-array objects have affinity with thread zero.
* Array layouts are controlled by layout specifiers:
— Empty (cyclic layout)
— [*] (blocked layout)
— [0] or [] (indefinite layout, all on 1 thread)
— [b] (fixed block size)
« The affinity of an array element is defined in terms of:
— block size, a compile-time constant
— and THREADS.
« Element i has affinity with thread
(1 / block size) % THREADS

* In 2D and higher, linearize the elements as in a C representation, and
then use above mapping
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More on Shared Arrays

« Shared arrays are just data allocated on different processors
— Can be cast into any block size
— Casting just renumbers indices of shared array (data doesn’t move!)
— Example with 4 threads
 Allocate an array:
 shared int *A = upc_all alloc(THREADS, sizeof(int)*4)

(shared [4] int*) A (shared [2] int™) A (shared [1] int*) A

PO

P1 2 3 10 11

P2 4 5 1213

P3
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UPC Matrix Vector Multiplication

- Matrix-vector multiplication with matrix stored by rows

» (Contrived example: problem size is square and multiple of

thread count)

#define N 1024
shared [N*N/THREADS] int A[N]]
shared [N/THREADS] int b[N], c

N]; /*blocked row-wise*/
[N]; /*blocked row-wise*/
volid main (void) {
int i, j , 1;
upc forall( i =0 ; i1 < N ; i++; &A[1]1[0]) {
/*if I own row i of A%/
c[i] = 0O;
for ( 1= 0 ; 1l< THREADS ; 1++)
cli] += al1][1]*b[1l];
/*no communication since all data accessed is local*/

) }
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UPC Matrix Multiplication Code

/* mat mult 1l.c */
#include <upc relaxed.h>
#define N 1024

#define P 1024

#define M 1024

/* a and ¢ are row-wise blocked shared matrices*/

shared [N*P/THREADS] int a[N][P];

shared [M*N/THREADS] int c[N] [M];

shared [M/THREADS] int b[P][M]; /*column-wise blocking*/

volid main (void) {
int i, j , 1; /* private variables*/

upc forall (i = 0 ; i<N ; i++; &c[1][0])
for (3j=0 ; J<M ;Jj++) |
c(i][3] = 0;

/*access remote data for matrix multiply*/
for (1= 0 ; 1<P ; 1+4++) cl[i][3] += ali][1l]1*b[1l][]];

I8
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Domain Decomposition for UPC

 Exploits locality in matrix multiplication

A (N xP)is decomposed row-wise  « B(P x M) is decomposed column wise

into blocks of size (N x P) / into M/ THREADS blocks as shown
THREADS as shown below: below:
Thread THREADS-1
) . Tlrread 0
) P g < _l M >
0 .. (N*P/ THREADS) -1 Thread 0
(N*P/ THREADS)..2*N*P / THREADS)-1 Thread 1
o
N °
P ° ° °
o
(HREADSAND | THREADS) Thread THREADS-1

eNote: N and M are assumed to be multiples of

THREADS Columns 0: (M/
THREADS)-I Columns ((THREAD—I) X M)/

THREADS:(M-1)
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Pointers to Shared vs. Arrays

* In the C tradition, array can be access through pointers
* Here is the vector addition example using pointers

#define N 100*THREADS
shared int v1[N], v2[N], sum[N]; /*cyclic layout*/

void main () {
int 1i;
! V1 Nt o~
shared int *pl, *p2; ‘\L;//’

p1

pl=vl,; p2=v2;
for (1i=0; i<N; i++, pl++, p2++ )
if (i STHREADS == MYTHREAD)
sum[i]= *pl + *p2;
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UPC Pointers

Thread, Thread, Thread,
” -4
7 p3: 7 p3: 7 p3:
o . >
S o ||[PH A7 | P4 ; " p4: Shared
T O
© @©
T B
S Lny diiieg coe p1: 1~
O 02: 7 p2: p2: Private
int *pl; /* private pointer to local memory */

shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to

shared space */

Pointers to shared often require more storage and are more costly to dereference;
they may refer to local or remote memory.
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Common Uses for UPC Pointer Types

int *pl;
 These pointers are fast (just like C pointers)

« Use to access local data in part of code performing local
work

« Often cast a pointer-to-shared to one of these to get faster
access to shared data that is local

shared int *p2;
 Use to refer to remote data

« Larger and slower due to test-for-local + possible
communication

int *shared p3;

 Not recommended

shared int *shared p4;

- Use to build shared linked structures, e.g., a linked list
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Bulk Data Movement and Nonblocking

Communication

« Using loops to perform bulk data movement could potentially be slow
because of network traffic per element

« Language introduces variants of memcpy to address these issues
* upc_memcpy (source and destination are in shared space)
e upc_memput (source is in private / destination is in shared)
* upc_memget (source is in shared / destination is in private)
« Berkeley UPC extensions provide nonblocking variants

— Allows communication/computation or communication/communication
overlap

— Unlike MPI_Isend and MPI_Irecv, they are completely one sided and
are a better semantic fit for Remote Direct Memory Access (RDMA)

— Expected to be part of language standard soon
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T
Berkeley UPC Extensions

* Nonblocking communication

— Ability to have communication/computation or communication/
communication overlap

— Like MPI_Isend and Irecv, uses explicit handles that need to be
synched.

« Semaphores and Point-to-Point synchronization
— Many applications need point-to-point synchronization
— Provide mechanisms to allow it in UPC without making it default

— Interface provides a one-sided signaling put which notifies remote
processor when data has arrived

 Value-based collectives

— Simplify collective interface when you need collectives on scalar
values

 Remote atomics
— Perform atomic operations on 32 or 64 bit ints on shared heap
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UPC Synchronization
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Synchronization - Locks

Locks in UPC are represented by an opaque type:

upc lock t
Locks must be allocated before use:

upc_lock t *upc all lock alloc(void);
allocates 1 lock, pointer to all threads
upc _lock t *upc global lock alloc(void) ;
allocates 1 lock, pointer to one thread
To use a lock:

void upc lock (upc lock t *1)

void upc unlock (upc lock t *1)
use at start and end of critical region

Locks can be freed when not in use

void upc lock free(upc lock t *ptr);
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Piin UPC; Shared Memory Style

« Parallel computing of pi, without the bug
shared int hits;
main (int argc, char **argv) {
int i, my hits, my trials = 0;
upc_lock t *hit lock = upc all lock alloc();
— 1nt trials = atoi(argv([i]),
my trials = (trials + THREADS - 1)/THREADS;
srand (MYTHREAD*17) ; accumulate hits
for (i=0; i < my trials; i++) locally
my hits += hit();
upc_lock (hit_lock) ; accumulate across
hits += my hits; threads
upc _unlock (hit 1lock);
upc_barrier;
if (MYTHREAD == 0)
printf ("PI: %$f", 4.0*hits/trials); }

create a lock
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Extensions and Tricks of the
Trade
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Pointer Directory

« Want each processor to dynamically allocate an array of k doubles of
data on every processor that is remotely addressable.

« We want the k bytes to be contiguous so that they can be cast into local
pointers and passed into C-library functions without extra copies

— If k is a compile constant: shared [k] double A[THREADS*k] else
shared [] double **my dir; /*local array of UPC pointers*/
shared double *global array; /*cyclic by default*/
my dir = (shared [] double*¥)

malloc (sizeof (shared[] double*) *THREADS)
global array = upc _all alloc(THREADS, k);
for (i=0; i<THREADS; i++) { /*cyclic dist. implies elem i is
on proc i so cast gets all memory w/ affinity to that proc*/
my dir[i] = (shared [] double*) &global array[i];}
To access element / on proc p (i can range from 0 to k-1)
my dir [p][i] or *(my dir [p]+i)

)\ . Berkeley UPC: http://upc.lbl.gov
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Point-to-Point Sync
« Many algorithms need point-to-point synchronization
— Producer/consumer data dependencies (one-to-one, few-to-few)
« Sweep3d, Jacobi, MG, CG, tree-based reductions, ...
— Ability to couple a data transfer with remote notification
— Message passing provides this synchronization implicitly
 recv operation only completes after send is posted
« Pay costs for sync & ordered delivery whether you want it or not
— For PGAS, really want something like a signaling store (Split-C)
« Current mechanisms available in UPC:
— UPC Barriers - stop the world sync
— UPC Locks - build a queue protected with critical sections
— Strict variables - roll your own sync primitives
« Our Proposed Extension

— Use semaphores in shared space at each threads and provide
“signalling put”

— User specifies remote semaphore to signal on a put

— Point-to-point synchronization is provided only when needed

)\ . Berkeley UPC: http://upc.lbl.gov
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Point-to-Point Synchronization (cont):

« Simple extension to upc_memput interface

void bupc memput signal (shared void *dst, void *src, size t nbytes,
bupc sem t *s, size t n);

— Two new args specify a semaphore to signal on arrival
— Semaphore must have affinity to the target
— Blocks for local completion only (doesn't stall for ack)
— Enables implementation using a single network message
— Also provide a non-blocking variant
« Target side calls wait on the same semaphore

— When the semaphore gets tripped the data has arrived and the target
can safely use the buffer

— Interface: bupc sem wait (bupc sem t *s)

Thread 1 Thread 0 memput_signal:
bupc sem t *sem = ..; latency ~0.5 round-
- trips
bupc_memput signal(..,sem); ™ bupc_sem wait (sem) ; allows overlap
/* overlap compute */ /* consume data */ easy to use

)\ . Berkeley UPC: http://upc.lbl.gov
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Application Examples and
Performance
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Dense LU Factorization in UPC

» Direct methods have complicated dependencies
» Especially with pivoting (unpredictable communication)
» Especially for sparse matrices (dependence graph with holes)
* LU Factorization in UPC
» Use overlap ideas and multithreading to mask latency
* Multithreaded: UPC threads + user threads + threaded BLAS
« Panel factorization: Including pivoting
» Update to a block of U
* Trailing submatrix updates

« Written in a Data-centric way

« Shared address space and one-sided communication allows remote
enqueue of work w/o interrupting the remote processors

* Dense LU done: HPL-compliant
« Sparse version underway
« Ref: “Multi-Threading and One-Sided Communication in Parallel LU

Factorization” bx Parrx Husbands and Kathx Yelick |SC’O7|
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UPC HPL Performance

X1 Linpack Performance Opteron Cluster Altix Linpack
Linpack Performance |« MP| HPL numbers from
1400 Performance
auPIHPL 160 HPCC database
1200 mupC _
- 140 4 Large scaling:
1000 T
0 «2.2 TFlops on 512p,
o 800 ] 100 -
g - - 4.4 TFlops on 1024p
v E 100 5 _ | (Thunder)
400 m MPIHPL
40 {muprC
50 -
200 20 |
0 A 0 0
X1/60 X1/64 X1/128 Opt/64 Alt/32

« Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid

— ScalLAPACK (block size 64) 25.25 GFlop/s (tried several block sizes)

— UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s
* n=32000 on a 4x4 process grid

— ScalLAPACK - 43.34 GFlop/s (block size = 64)

— UPC - 70.26 Gflop/s (block size = 200)

Joint work with Parry Husbands

‘)'h ) Berkeley UPC: http://upc.lbl.gov
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Other Dense Linear Algebra Performance

on BG/P

Parallel Matrix Multiplication Parallel Cholesky
(256 core BlueGene/P) Factorization
700 (256 core BlueGene/P)
250
600
500 200
@ 400 @ 150
= 3
(1
© 300 & 100
200
50
100
0
0 ScalLapack UPC hand-roll UPC collective
PBLAS (MPI) UPC hand-roll UPC collective (MPI)

‘/f>| A Berkeley UPC: http://upc.lbl.gov

Titanium: http:/titanium.cs.berkeley.edu




Case Study: NAS FT Benchmark

1D Partition
(4 threads)

2D Partition
(4x4 threads)

| NZ/T . o NZ/TZ
v\:f INY/TY
T3 NY
T2 -
T1
TO - =V
NX - >
 Perform alarge 3D FFT NX
— Molecular dynamics, CFD, image processing, signal processing, astrophysics,

etc.
— Representative of a class of communication intensive algorithms
* Requires parallel many-to-many communication
» Stresses communication subsystem
 Limited by bandwidth (namely bisection bandwidth) of the network
« Building on our previous work, we perform a 2D partition of the domain
— Requires two rounds of communication rather than one
— Each processor communicates in two rounds with O(NT) threads in each

/J\I . Berkeley UPC: http://upc.lbl.gov 51 f
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Strong Scaling

UPC Slabs -
MPI Packed Slabs| o == 2
10°+ MPISIlabs | = === |

GFlops

Performance Ratio

[ —— UPC Siabs / MPI Siabs
0.8 ~©~ UPC Slabs / MP| Packed Slabs

512 1024 2048 4096 8192 16384 512 1% 2k ak 8k 16k
Core Count (Problem Size for All Core Counts: 2048 x 1024 x 1024)

« Fix problem size at 2k x 1k x 1k and run in VN mode
— upto 4 racks of BG/P with 4 processes per node

» Analytic upper bound calculates megaflop rate based on time needed to transfer
domain across the bisection

— Kink at 2048 cores indicates where 3D Torus is completed
 MPI Packed Slabs scales better than MPI Slabs

— Benefit of comm/comp. overlap outweighed by extra messages
 UPC (i.e. GASNet) Slabs consistently outperforms MPI

— Lower software overhead enables better overlap

— Outperforms Slabs by mean of 63% and Packed Slabs by mean of 37%

/J\ . Berkeley UPC: http://upc.lbl.gov
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‘Weak Scalin

= = = Upper Bound

UPC Slabs
MPI Packed Slabs
103 | MPI Slabs

GFlops
Performance Ratio

-

-
-
-

L L ! ‘ [ ——UPC Slabs / MPI Siabs
256 (D/8) 512(D/4) 1024 (D/2) 2048 (D) 4096 (2D) 8192 (4D) 16384 (8D) 0.8 - | O~ UPC Siabs / MPI Packed Siabs
Core Count (Problem Size) (D=2048x1024x1024) 256 512 1Kk 2 4k 8k 16k

« Scale problem size with the number of cores
— computation for FFT scales as O(N log N) so thus flops don’t scale linearly
« UPC Slabs scales better than strong scaling benchmark

— Message size gets too small at high concurrency for strong scaling and becomes
hard to utilize overlap

 MPI Packed Slabs outperforms MPI Slabs (most of the time)

— Again indicates that overlapping communication/computation is not a fruitful
optimization for MPI

 UPC achieves 1.93 Teraflops while best MPI achieves 1.37 Teraflops
— 40% improvement in performance at 16k cores.
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Latest FFT Performance on BG/P (strong scaling)

3000
—4=Slabs
- '
2500 - Slabs (Collective) |
=*—Packed Slabs (Collective)
=><MPI Packed Slabs
2000
73
Q
9 1500
L
o
1000
500
0
D D D D D D D
512 1024 2048 4096 8192 16384 32768
128 256 512 1024 2048 4096 8192

; A
rrrrrrr |||||
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Latest FFT Performance on BG/P (weak scaling)

3500 :
HPC Challenge Peak as of July 09 is ~4.5 TFlops
s000 L. olabs on 128k Cores
—#-Slabs (Collective)
2500 - =*—Packed Slabs (Collective)
=>=MPI Packed Slabs
& 2000
L)
T
(M 1500
1000
500
0
D/8 D/4 D/2 D D*2 D*4 D*8 D*16
256 512 1024 2048 4096 8192 16384 32768
64 128 256 512 1024 2048 4096 8192

A
rrrrrrr |||||
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Thanks!
Any Questions?
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Titanium Overview
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Titanium Overview and Design

« Based on Java, a cleaner C++
— Classes, automatic memory management, etc.
— Compiled to C and then machine code, no JVM
« Same parallelism model at UPC and CAF
— SPMD parallelism
— Dynamic Java threads are not supported
* Optimizing compiler
— Analyzes global synchronization
— Optimizes pointers, communication, memory
« Titanium is designed for
— Structured grids
— Locally-structured grids (AMR)
— Particle/Mesh methods

/*\ . Berkeley UPC: http://upc.lbl.gov
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SPMD Execution Model

 Titanium has the same execution model as UPC and CAF

« Basic Java programs may be run as Titanium programs, but all
processors do all the work.

 E.g., parallel hello world
class HelloWorld {

public static void main (String [] argv) {
System.out.println(“Hello from proc ™

+ Ti.thisProc()
+ % out of “

+ Ti.numProcs());

}
* Global synchronization done using Ti.barrier ()

)\ . Berkeley UPC: http://upc.lbl.gov
’—'w Titanium: http:/titanium.cs.berkeley.edu




R
Barriers and Single

« To put a barrier (or equivalent) inside a method, you need to make the
message “single” (aka “sglobal”).
— A “single” method is one called by all procs
public single static void allStep(...)

— These single annotations on methods are optional, but useful in
understanding compiler messages

» To put a barrier (or single method) inside a branch or loop, you need to
use a “single” variable for branch

* A “single” variable has same value on all procs
int single timestep = 0;

« Compiler proves that all processors call barriers together "Barrier
Inference" [Gay & Aiken]

‘)'ﬁ |;h Berkeley UPC: http://upc.lbl.gov
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Titanium Arrays

« Titanium arrays are created and indexed using points:
double [3d] gridA = new double[[-1:-1:-1]:[256:256:256]];
« gridA has a rectangular index set (called a RectDomain) of Points
Point<3> 1lb = [-1,-1,-1], ub = [256,256,256], randompoint =
[6,7,42];
RectDomain<3> allpoints = [lb:ub];
double [3d] gridA = new double[allpoints];
gridA[randompoint]= 3.1415;
« Unlike UPC all references are assumed global unless otherwise denoted
by the user
- foreach loop iterator provides unordered iteration over a domain

foreach(p in gridA.domain()) {
gridA[p] = 1000*p[1]+100*p[2]+10*p[3];}

/*\ . Berkeley UPC: http://upc.lbl.gov
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More about domains

Titanium arrays have a rich set of operations

—

translate restrict slice (n dim to n-1)

- None of these modify the original array, they just create another view of

the data in that array
You create arrays with a RectDomain and get it back later using

A.domain() for array A
* A Domain is a set of points in space
* A RectDomain is a rectangular one
Operations on Domains include +, -, * (union, different intersection)

f”\ . Berkeley UPC: http://upc.lbl.gov
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Distributed Data Structures

« Building distributed arrays:
Particle [1d] single [1d] allParticle =

new Particle [0:Ti.numProcs-1][1d];
Particle [1d] myParticle =

new Particle [0:myParticleCount-1];

allParticle.exchange (myParticle) ;

All to all broadcast

- Now each processor has array of pointers, one to each processor’s
chunk of particles

PN

PO P1 P2
‘)'h . Berkeley UPC: http://upc.lbl.gov
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Domain Calculus and Array Copy

* Full power of Titanium arrays combined with PGAS model
« Titanium allows set operations on RectDomains:

destarray.copy (sourcearray, domain/points (optional)) ; //
copy all data where domains overlap

// update overlapping ghost cells of neighboring block

data[neighborPos] .copy (myData.shrink (1)) ;

« The copy is only done on intersection of source and dest array
RectDomains

« Titanium also supports nonblocking array copy

non-ghost (“shrunken’) e ___—intersection (copied area)
cells B fills in neighbor’s ghost cells
ghost Cells/ mydata data[neighborPos]
Slide source: Datta et al. [LCPC '006]
A\ . Berkeley UPC: http://upc.lbl.gov 64 [
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Performing a 3D FFT

« NX X NY x NZ elements spread across P processors

* Will Use 1-Dimensional Layout in Z dimension

— Each processor gets NZ / P “planes” of NX x NY elements
per plane

Example: P =4

'w‘

t+ 1D Partition

NX

A
v

NY
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Performance Summary

1200
M Best NAS Fortran/MPI
1000 | Best MPI (always Slabs)
M Best UPC (always Pencils)
§ 800
o
~N
w 600
B c
2 S
s 400 &
Q
200 o
o
o
O i
el 4250 3250 353 4250 a5
PA’WrmOpteronrmﬁ“\Ba“ A\P“ale\an A\Q“alE\an aniV Ziad “an'\um’LIE\an
] ] Platform ) . ] _
» Best MPI/UPC implementation leverage aggressive communication/computation

overlap

» pencils is finer-grained overlap than slabs
» UPC achieves better performance because one-sided semantics (i.e. decoupling
synch and data movement) are a better match to the network hardware
* Ref: “Optimizing Bandwidth Limited Problems Using One-Sided Communication
and Overlap” C. Bell, D. Bonacha, R. Nishtala, and K. Yelick [IPDPS ’06]
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3D-FFT Algorithm

« Perform a 3D FFT (as part of NAS FT)
across a large rectangular prism

I N
I — Perform an FFT in each of the 3
r--- Dimensions
H m N < PO — Need to Team-Exchange for other 2/3
a dimensions for a 2-D processor layout
H — Performance limited by bisection
bandwidth of the network
a — Perform FFT across the rows
— Do an exchange within each plane
— Perform FFT across the columns
Each processor owns a row
of 4 squares

(16 Processors in example) — Perform FFT across the last dimension

— Do an exchange across planes

7*‘}' |;h Berkeley UPC: http://upc.lbl.gov
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Adaptive Mesh Refinement in Titanium

C++/Fortran/MPI AMR 30000
Chombo package from LBNL
Bulk-synchronous comm:

— Pack boundary data between procs 25000 —
— All optimizations done by 0 AMRElliptic
programmer m AMRTools
20000 Uil
o (R
O
S O Grid
Titanium AMR ‘s 15000 @ AMR
. . . . (723
. E.ntlrely In Titanium o 2 m Array
* Finer-grained communication —

10000

— No explicit pack/unpack code

— Automated in runtime system
General approach

— Language allow programmer
optimizations

— Compiler/runtime does some 0

automatically

Titanium C++IFIMPI
(Chombo)

Work by Tong Wen and Philip Colella; Communication optimizations joint with Jimmy Su
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Titanium AMR Performance

* Performance is comparable Serial Running Time
with much less programming 0 B Titanium
work 120 B C++/F (Chombo)
. . 100
« Compiler/runtime perform g o
some tedious (SMP-aware) " 40
optimizations A
Opteron Pawer3 Pentium 4
. . 2.2 GHz 375 GHz 2.8 GHz
Parallel Running Time
—o— C++/F/IMPI  Power3/SP
200 —=—Titanium Power3/SP
C++/F/MPI  Opteron/IB
150 = Titanium Opteron/IB
8 100
/]
50
O 1 1 1 1
16 28 36 56 112
procs
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|_ots of Other Features

 |mmutable classes

— Want to pass C-like structures by value (i.e. Complex numbers or
coordinates)

— Values can’t be modified outside of data structures.
« Cross Language Calls

— Allows users to call serial libraries written in C

— Call serial libraries with C interfaces (i.e. BLAS, FFTW, OSKI, etc)
* Region-based Memory Management

— Preserves safety — cannot deallocate live data

* (True in principle, although runtime is missing some checking
required by language in practice)
— Garbage collection is the default (on most platforms)
— Higher performance is possible using region-based explicit memory
management
— Takes advantage of memory management phases

* And a whole lot more...
‘)'h . Berkeley UPC: http://upc.lbl.gov
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UPC Continued

Berkeley UPC: http://upc.lbl.gov
Titanium: http://titanium.cs.berkeley.edu




Backup Slides

Berkeley UPC: http://upc.lbl.gov
Titanium: http://titanium.cs.berkeley.edu




-
Blocked Layouts in UPC

» The cyclic layout is typically stored in one of two ways
 Distributed memory: each processor has a chunk of memory
« Thread 0 would have: 0,THREADS, THREADS*2,... in a chunk
« Shared memory machine: each thread has a logical chunk
« Shared memory would have: 0,1,2,... THREADS, THREADS+1,...
« What performance problem is there with the latter?
» What is this code was instead doing nearest neighbor averaging?
» Vector addition example can be rewritten as follows

#define N 100*THREADS
shared |[*]| int Vv1[N], v2[N], sum[N];

blocked layout

void main() {
int 1i;

upc forall (i=0; i<N; i++; |&sum[i]
sum[i]=v1[i]+Vv2][i];

==
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UPC Collectives in General

The UPC collectives interface is available from:

— http://www.gwu.edu/~upc/documentation.html
* |t contains typical functions:
— Data movement: broadcast, scatter, gather, ...
— Computational: reduce, prefix, ...
* Interface has synchronization modes:

— Avoid over-synchronizing (barrier before/after is simplest
semantics, but may be unnecessary)

— Data being collected may be read/written by any thread
simultaneously

)\ . Berkeley UPC: http://upc.lbl.gov
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2D Array Layouts in UPC

« Array a1 has a row layout and array a2 has a block row layout.
shared [m] int al [n][m];
shared [k*m] int a2 [n][m];

« If(k+ m)% THREADS = = 0 them a3 has a row layout
shared int a3 [n][m+kK];

 To get more general HPF and ScaLAPACK style 2D blocked
layouts, one needs to add dimensions.

« Assume r'c = THREADS;

shared [b1][b2] int a5 [m][n][r][c][b1][b2];
or equivalently

shared [b1*b2] int a5 [m][n][r][c][b1][b2];

/*\ . Berkeley UPC: http://upc.lbl.gov
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Notes on the Matrix Multiplication

Example

« The UPC code for the matrix multiplication is almost the same
size as the sequential code

« Shared variable declarations include the keyword shared

« Making a private copy of matrix B in each thread might result in
better performance since many remote memory operations can
be avoided

« Can be done with the help of upc_memget

/*\ . Berkeley UPC: http://upc.lbl.gov
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UPC Pointers

Where does the pointer point?

Local Shared
Where does Private | PP (p1) | PS (p3)
the pointer
reside? Shared | SP (p2) | SS (p4)
int *pl; /* private pointer to local memory */

shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to

shared space */
Shared to private is not recommended.
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Optimizing Bandwidth Limited
Problems Using One-Sided
Communication and Overlap

Christian Bell'2, Dan Bonachea’,
Rajesh Nishtala’, and Katherine Yelick'-?

UC Berkeley, Computer Science Division
2LLawrence Berkeley National Laboratory
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Conventional Wisdom

« Send few, large messages
— Allows the network to deliver the most effective bandwidth
 |solate computation and communication phases

— Uses bulk-synchronous programming
— Allows for packing to maximize message size

« Message passing is preferred paradigm for clusters

* Global Address Space (GAS) Languages are
primarily useful for latency sensitive applications

« GAS Languages mainly help productivity

— However, not well known for their performance advantages

)\ . Berkeley UPC: http://upc.lbl.gov
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Our Contributions
* Increasingly, cost of HPC machines is in the network

« One-sided communication model is a better match to
modern networks

— GAS Languages simplify programming for this model

 How to use these communication advantages
— Case study with NAS Fourier Transform (FT)

— Algorithms designed to relieve communication bottlenecks
» Overlap communication and computation
« Send messages early and often to maximize overlap

)\ . Berkeley UPC: http://upc.lbl.gov 81 0N
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UPC Programming Model

* Global address space: any thread/process may directly read/write data

allocated by another

« Partitioned: data is designated as local (near) or global (possibly far);
programmer controls layout

00
g:\ g: / private g: /
l:\ l\ I
Proc O Proc 1 Proc n-1

« 3 ofthe current languages: UPC, CAF, and Titanium
— Emphasis in this talk on UPC (based on C)

Global arrays:
Allows any
processor to directly
access data on any
other processor

— However programming paradigms presented in this work are

not limited to UPC

‘/j>| . Berkeley UPC: http://upc.lbl.gov
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Advantages of GAS Languages

* Productivity
— GAS supports construction of complex shared data structures
— High level constructs simplify parallel programming
— Related work has already focused on these advantages

« Performance (the main focus of this talk)
— GAS Languages can be faster than two-sided MPI

— One-sided communication paradigm for GAS languages more
natural fit to modern cluster networks

— Enables novel algorithms to leverage the power of these networks

— GASNet, the communication system in the Berkeley UPC Project,
is designed to take advantage of this communication paradigm

fm A Berkeley UPC: http://upc.lbl.gov 83
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One-Sided vs Two-Sided

one-sided put (e.g., GASNet)

dest. addr. [datapayload | |network

interface

two-sided message (e.g., MPI)
message id [datapayload |

» A one-sided put/get can be entirely handled by network interface with RDMA
support

— CPU can dedicate more time to computation rather than handling communication

* A two-sided message can employ RDMA for only part of the communication

— [Each message requires the target to provide the destination address
— Offloaded to network interface in networks like Quadrics

- RDMA makes it apparent that MP| has added costs associated with ordering to
make it usable as a end-user programming model
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Latency Advantages

« Comparison:

ltanium2/Elan4 Roundtrip latency

jors
N

~ One-sided: N B
- Initiator can always transmit 1o{| A MPI isand/irgey ping + 0-eyte 8ok

remote address

* Close semantic match to high
bandwidth, zero-copy RDMA

— Two-sided:

* Receiver must provide
destination address

Roundtrip latency (microseconds)
o ~ © o

down is good

- N () o [

- Latency measurement correlates

to Software Overhead 1 2 4 8 11_r nsf?azr Siz?bytlai? 256 512 1024 2048
— Much of the small-message
|atency is due to time spent in One-sided implementation consistently
software/firmware processing outperforms 2-sided counterpart

Berkeley UPC: http://upc.lbl.gov
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Bandwidth Advantages

 One-sided semantics better match to
RDMA supported networks

— Relaxing point-to-point ordering 1000
constraint can allow for higher
performance on some networks

— GASNet saturates to hardware peak
at lower message sizes

— Synchronization decoupled from data
transfer

 MPI semantics designed for end user
— Comparison against good MPI

Opteron/Infiniband Flood Bandwidth

—E— GASNet non-blocking put [ —+— GASNet / MPI
—&— MPI Isend/Irecv (MVAPICH 0.9.5)

©
o
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1
N
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@
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1
n
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n
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n
Relative Bandwidth (GASNet / MPIj
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500} \’*/
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Flood Bandwidth (MB/s) 1MB=2%" bytes

200
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100

o

implementation 4
— Semantic requirements hinder MP| 16 %2 6z 2“02377/Tr22sf§?s£§ Bytes) o o TeRkEme
performance Over a factor of 2 | t
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Bandwidth Advantages (cont)

Flood Bandwidth for 512kB Messages
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Percentage of Hardware Peak Bandwidth

« PO0OD sidn

GASNet and MPI saturate
to roughly the same
bandwidth for “large”
messages

GASNet consistently
outperforms MPI for “mid-
range” message sizes
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A Case Study: NAS FT

 How to use the potential that the microbenchmarks reveal?

« Perform a large 3 dimensional Fourier Transform

— Used in many areas of computational sciences

* Molecular dynamics, computational fluid dynamics, image processing,
signal processing, nanoscience, astrophysics, etc.

* Representative of a class of communication intensive
algorithms
— Sorting algorithms rely on a similar intensive communication pattern

— Requires every processor to communicate with every other processor
— Limited by bandwidth

fﬁ ) Berkeley UPC: http://upc.lbl.gov

| \H Titanium: http:/titanium.cs.berkeley.edu




Performing a 3D FFT (part 2)

* Perform an FFT in all three dimensions

« With 1D layout, 2 out of the 3 dimensions are local while the last Z
dimension is distributed

Berkeley UPC: http://upc.lbl.gov
Titanium: http://titanium.cs.berkeley.edu

V

Step 1: FFTs on the columns
(all elements local)

Step 2: FFTs on the rows
(all elements local)

Step 3: FFTs in the Z-dimension
(requires communication)
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Performing the 3D FFT (part 3)

« Can perform Steps 1 and 2 since all the data is
available without communication

« Perform a Global Transpose of the cube
— Allows step 3 to continue

Transpose

>
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The Transpose

 Each processor has to scatter input domain to other
Processors
— Every processor divides its portion of the domain into P pieces
— Send each of the P pieces to a different processor

« Three different ways to break it up the messages

1. Packed Slabs (i.e. single packed “Alltoall” in MPI parlance)
2. Slabs
3. Pencils

 An order of magnitude increase in the number of messages
* An order of magnitude decrease in the size of each message

« “Slabs” and “Pencils” allow overlapping communication and
computation and leverage RDMA support in modern networks

/*\ . Berkeley UPC: http://upc.lbl.gov
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Algorithm 1: Packed Slabs

——> putto proc0

Example with P=4, NX=NY=NZ=16

——> put to proc 1

2. Perform local transpose

— data destined to a remote processor
are grouped together

3. Perform P puts of the data

1. Perform all row and column FFTs —

——> put to proc 2

——> put to proc 3

Local transpose
. For 5123 grid across 64 processors
— Send 64 messages of 512kB each

‘)'h ) Berkeley UPC: http://upc.lbl.gov
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Bandwidth Utilization

 NAS FT (Class D) with 256 processors on Opteron/
InfiniBand
— Each processor sends 256 messages of 512kBytes

— Global Transpose (i.e. all to all exchange) only achieves
67% of peak point-to-point bidirectional bandwidth

— Many factors could cause this slowdown

* Network contention
« Number of processors that each processor communicates with

« Can we do better?

fﬁ |;h Berkeley UPC: http://upc.lbl.gov
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Algorithm 2: Slabs

« Waiting to send all data in one phase

zmchtis ups)kcc;rr;]munlcatlon events olane 0
. gorithm Sketc [
— for each of the NZ/P planes : _ putto proc®
« Perform all column FFTs ‘ |:>put to proc 1

« for each of the P “slabs”
(a slab is NX/P rows) —> [——> put to proc 2

— Perform FFTs on the rows in the slab
— Initiate 1-sided put of the slab ‘ _ :>put to proc 3
— Wait for all puts to finish

— Barrier
. ‘ Start computation
* Non-blocking RDMA puts allow data for next pf;ne

movement to be overlapped with

« For 5123 grid across 64

computation.
* Puts are spaced apart by the amount processors
of time to perform FFTs on NX/P rows — Send 512 messages of
64kB each

f”\ . Berkeley UPC: http://upc.lbl.gov
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Algorithm 3: Pencils

» Further reduce the granularity of
communication
— Send a row (pencil) as soon as it is ready
« Algorithm Sketch
— For each of the NZ/P planes
» Perform all 16 column FFTs

« Forr=0; r<NX/P; r++
— For each slab s in the plane
» Perform FFT onrow rof slab s
» Initiate 1-sided put of row r

— Wait for all puts to finish Start computation

— Barrier for next plane
« Large increase in message count

« Communication events finely diffused < For 5123 grid across 64

plane 0

WWWWNNNN—2A 220000

through computation processors
— Maximum amount of overlap — Send 4096 messages
— Communication starts early of 8kB each

f”\ . Berkeley UPC: http://upc.lbl.gov
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Communication Requirements

With Slabs GASNet is slightly faster than
« 5123 across 64 processors el

Opteron/Infiniband Flood Bandwidt%

ol o e s 0. s
— Alg 1: Packed Slabs £ w g ;
» Send 64 messages of 512kB afg? o d
— Alg 2: Slabs 2 . / 2
« Send 512 messages of 64kB g a0
— Alg 3: Pencils .
« Send 4096 messages of 8kB “ .| - \

0 1 1 1 1 1 1 -«
16 32 256 512 1k 2k 4k \gk/ 16k 32k 128k 25¢k
_ ) Data Transfer Size (!ggés) W
GASNet achieves close to peak bandwidth /

with Pencils but MPI is about 50% less
efficient at 8k With the message sizes in Packed Slabs both

comm systems reach the same peak bandwidth
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Platforms

Name

Processor

Network

Software

Opteron/Infiniband
“‘Jacquard” @ NERSC

Dual 2.2 GHz Opteron
(320 nodes @ 4GB/
node)

Mellanox Cougar
InfiniBand 4x HCA

Linux 2.6.5, Mellanox
VAPI, MVAPICH 0.9.5,
Pathscale CC/F77 2.0

Alpha/Elan3
“‘Lemieux” @ PSC

Quad 1 GHz Alpha
21264 (750 nodes @
4GB/node)

Quadrics QsNet1
Elan3 /w dual rail (one
rail used)

True4 v5.1, Elan3
libelan 1.4.20, Compaq
C V6.5-303, HP Fortra
Compiler
X5.5A-4085-48E1K

[tanium2/Elan4
“Thunder” @ LLNL

Quad 1.4 Ghz ltanium2
(1024 nodes @ 8GB/
node)

Quadrics QsNet2 Elan4

Linux 2.4.21-chaos,
Elan4 libelan 1.8.14,
Intel ifort 8.1.025, icc 8.

1.029

P4/Myrinet
‘FSN” @

UC Berkeley Millennium
Cluster

A
(freesrs ||1||

Dual 3.0 Ghz Pentium 4
Xeon (64 nodes @ 3GB/
node)

Berkeley UPC: http://upc.lbl.gov
Titanium: http://titanium.cs.berkeley.edu

Myricom Myrinet 2000
M3S-PCl64B

Linux 2.6.13, GM 2.0.19,
Intel ifort
8.1-20050207Z, icc
8.1-20050207Z2
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Comparison of Algorithms

« Compare 3 algorithms against
original NAS FT

— All versions including Fortran 2.5+ MUPC Packed Slabs
use FFTW for local 1D FFTs UPC Slabs

2.25 +—— W UPC Pencils
— Largest class that fit in the
memory (usually class D)

« All UPC flavors outperform
original Fortran/MPI
implantation by at least 20%

— One-sided semantics allow
even exchange based
implementations to improve
over MPI implementations &

3

— Overlap algorithms spread the Q&\‘“ '
messages out, easing the ,&@“ & &P
bottlenecks o¢

— ~1.9x speedup in the best
case

1.75

1.5

1.25

poob si dn

Speedup over NAS Fortran/MPI

0.75 -+

/=\| . Berkeley UPC: http://upc.lbl.gov
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Time Spent in Communication

-
N

M UPC Slabs
M UPC Pencils |
MPI Slabs
M MPI Pencils

[y
o

Time Spent in Comm (seconds)
o))

4 ©
o
o
. o
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0- =
[ ) 1 2 ®)
o > €] > > &
< pes \o© \o© 2o yo©
\) \Z
R\ < < \2 <
sl AN 2\ = \ 2\ 2\
? 4 e e o O
,&(0 g@“ g&“
o°

Implemented the 3
algorithms in MPI using
Irecvs and Isends

Compare time spent

initiating or waiting for

communication to finish

— UPC consistently spends
less time in

communication than its
MPI counterpart

— MPI unable to handle
pencils algorithm in some
cases
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Conclusions

* One-sided semantics used in GAS languages, such as UPC,
provide a more natural fit to modern networks
— Benchmarks demonstrate these advantages

« Use these advantages to alleviate communication
bottlenecks in bandwidth limited applications

— Paradoxically it helps to send more, smaller messages

« Both two-sided and one-sided implementations can see
advantages of overlap

— One-sided implementations consistently outperform two-sided
counterparts because comm model more natural fit

Send early and often to avoid communication bottlenecks

f>| A Berkeley UPC: http://upc.lbl.gov 100 A5
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Try It!

« Berkeley UPC is open source
— Download it from htip://upc.lbl.gov

/J\I . Berkeley UPC: http://upc.lbl.gov 101 £
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Contact Us

 Associated Paper: IPDPS ‘06 Proceedings

 Authors « Berkeley UPC Website: http://upc.lbl.gov
_ Christian Bell * GASNet Website: http://gasnet.cs.berkeley.edu
— Dan Bonachea Special thanks to the fellow
— Rajesh Nishtala members of the Berkeley
— Katherine A. Yelick UPC Group
— Email us: « Wei Chen
* upc@lbl.gov « Jason Duell

« Paul Hargrove
* Parry Husbands
» Costin lancu

* Mike Welcome
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P2P Sync (PGAS’06)
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Efficient Point-to-Point
Synchronization in UPC

Dan Bonachea, Rajesh Nishtala,
Paul Hargrove, Katherine Yelick

U.C. Berkeley / LBNL

http://upc.lbl.gov
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Outline

« Motivation for point-to-point sync operations
* Review existing mechanisms in UPC

» QOverview of proposed extension

* Microbenchmark performance

» App kernel performance

)\ . Berkeley UPC: http://upc.lbl.gov 105
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Point-to-Point Sync: Motivation

 Many algorithms need point-to-point synchronization
— Producer/consumer data dependencies (one-to-one, few-to-few)
« Sweep3d, Jacobi, MG, CG, tree-based reductions, ...
— Ability to couple a data transfer with remote notification

— Message passing provides this synchronization implicitly
* recv operation only completes after send is posted
« Pay costs for sync & ordered delivery whether you want it or not

— For PGAS, really want something like a signaling store (Split-C)

« Current mechanisms available in UPC:
— UPC Barriers - stop the world sync
— UPC Locks - build a queue protected with critical sections
— Strict variables - roll your own sync primitives

« We feel these current mechanisms are insufficient

— None directly express the semantic of a synchronizing data transfer

 hurts productivity
* Inhibits high-performance implementations, esp on clusters

— _This talk will focus on impact for cluster-based UPC implementations

f>| A Berkeley UPC: http://upc.lbl.gov 106 A5
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Point-to-Point Sync Data Xfer in UPC

Thread 1 Thread 0

shared [] int datal..];

D
upc_memput (&data,..);, —

upc_barrier; < » upc_barrier;

/* consume data */

barrier:
over-synchronizes
threads
high-latency due to
barrier

« Works well for apps that are naturall§ BYKIaR ABHRGYGE

— all threads produce data, then all threads consume data
— not so good if your algorithm doesn't naturally fit that model

)\I . Berkeley UPC: http://upc.lbl.gov 107 D
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Point-to-Point Sync Data Xfer in UPC

Thread 1 Thread 0
shared [] int datal..];
int £ = 0;
upc lock t *L = .;
upc lock (&L) ; .
— SR ——
upc_locks:
upc memput (&data,.) ; - .
- 1. e latency 2.5+ round-trips
f - 1, e S . .
limited overlap on
P
upc_unlock (&L) ; producer

D —
while (1) {
upc_lock (&L) ;
if (f) break;
upc_unlock (&L) ;

/* consume data */

« This one performs so poorly on clusters that we won't consider it further...

‘)'h . Berkeley UPC: http://upc.lbl.gov 108 /2N
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Point-to-Point Sync Data Xfer in UPC

Thread 1 Thread 0
strict int £ = 0;

memput + strict flag:

upc_memput (&data,..); ———— Ia_tency ~1.5 round-
£=1; trips
= 1; -

while (!'£f) bupc polll}f: overlap on
/* consume data */ producer

strict int £ = 0;

non-blocking

h = bupc memput async(&data,..) \ memput + strict flag:
/* overlapped work.. */ allows overlap
bupc_waitsync (h) ; — latency ~1.5 round-
upc_fence; tri .
h2 = bupc memput async(&f,..); hr_lpl? lexit
/* overlapped work.. */ T, igher complexity
bupc waitsync (h2) ; while ('£f) bupc _poll();

/* consume data */

* There are several subtle ways to get this wrong
— not suitable for novice UPC programmers

/*\ . Berkeley UPC: http://upc.lbl.gov 109 ==
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Signhaling Put Overview

* Friendly, high-performance interface for a synchronizing, one-

sided data transfer
— Want an easy-to-use and obvious interface

* Provide coupled data transfer & synchronization
— Get overlap capability and low-latency end-to-end
— Simplify optimal implementations by expressing the right semantics
— Without the downfalls of full-blown message passing
« still one-sided in flavor, no unexpected messages, no msg ordering costs

Thread §|mllar to signaling stoa%?ggaagar (:-) in Split-C, with |mprov.ements
memput_signal:
latency ~0.5 round-

bupc_sem t *sem = ..;

bupc_memput signal(..,sem); ™ bupc_sem wait(sem); t"ps
/* overlap compute */ /* consume data */ allows overlap
easy to use

Berkeley UPC: http://upc.lbl.gov 110 £33
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EOIHE-!O-EOIHE gync”ronlza!lon:

Signaling Put Interface

« Simple extension to upc_memput interface

vold bupc memput signal (shared void *dst, void *src, size t nbytes,
bupc sem t *s, size t n);

— Two new args specify a semaphore to signal on arrival

— Semaphore must have affinity to the target

— Blocks for local completion only (doesn't stall for ack)

— Enables implementation using a single network message

« Async variant

vold bupc memput signal async (shared void *dst, void *src, size t nbytes,
bupc sem t *s, size t n);

— Same except doesn't block for local completion
— Analogous to MPI_ISend

— More overlap potential, higher throughput for large payloads

/*\ . Berkeley UPC: http://upc.lbl.gov 111
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an -10-Point Synchronization:
Semaphore Interface

« Consumer-side sync ops - akin to POSIX semaphores

- void bupc sem wait(bupc sem t *s); block for signal "atomic down"
- int bupc sem try(bupc sem t *s); test for signal "test-and-down"
— Also variants to wait/try multiple signals at once "down N"
— All of these imply a upc_fence

 Opaque sem_t objects

— Encapsulation in opaque type provides implementation freedom
— bupc sem t *bupc sem alloc(int flags) 7~_non-collectively
- void bupc sem free (bupc _sem t *s); creates a sem_t

— flags specify a few different usage flavors object with affinity to
« eg one or many producer/consumer threads, integrata@leifoolean signaling

« Bare signal operation with no coupled data transfer:
- void bupc sem post(bupc sem t *s); signal sem "atomic up (N)"
— post/wait sync that might not exactly fit the model of signaling put

fﬁ . Berkeley UPC: http://upc.lbl.gov
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Microbenchmark Performance
of Signaling Put

. Berkeley UPC: http://upc.lbl.gov 113

Titanium: http:/titanium.cs.berkeley.edu




e
Signaling Put: Microbenchmarks

Synchronizing Put on Itanium2 / Myrinet
40 -
—_ —=— memput + strict flag %
0 35 /[ /
2 —&— memput_signal w
2 h
§ 30 MPI send/recv / /
E s —/
> e
O gn_u u = u u = = .
© 2 15 ¥
S |2 .
T -
0 & - o o o o o
c | c
5
s |0
2 0
1 10 100 1000
Data payload size (bytes)

10000

« memput (roundtrip) + strict put: Latency is ~ 172 RDMA put roundtrips

 bupc_sem t: Latency is ~ 2 message send roundtrip
— same mechanism used by eager MPI_Send - so performance closely matches

f-ﬁ |$| Berkeley UPC: http://upc.lbl.gov
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RDMA put or
message send
latency:

~13 us round-trip

CITRIS @ UC Berkeley
1.3 GHz Itanium-2
Myrinet PCI-XD
MPICH-GM 1.2.6..14a
Linux 2.4.20
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Signaling Put: Microbenchmarks

Synchronizing Put Cost on Opteron/InfiniBand RDMA put
40
~ = memput + strict flag latency:
35 ~10.5us round-

_ —e— memput_signal tri D

8 30 |

o MPI send/recv /:7

g 25 /

c 20 _

3 - /

= I
:5 > 15 +—— — - n -
AN P
9210
2 o &
c e
% ° acquard @ NERSC
= 0 .2 GHz Opteron

1 1‘0 160 10‘00 10000/IeIIanox InfiniBand 4x
: inux 2.6.5-7.276
Pata payload size (bytes) VAPICH 0.9.5-mix1.0.3

« memput (roundtrip) + strict put: Latency is ~1%2 RDMA put roundtrips

* bupc_sem t: Latency is ~%2 RDMA put roundtrip
— sem_t and MPI both using a single RDMA put, at least up to 1KB

fm . Berkeley UPC: http://upc.lbl.gov e
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Using Signaling Put to
Implement Tree-based
Collective Communication
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Performance Comparison: UPC Broadcast

8-byte Broadcast Performance

mpi BMbest memput + strict fle. goest memput_sign

160 —

|—L
N
o

|
N
o

|
o
o

Broadcast Latency (us)
(00]
o

60

40 +—

20 +—
<)

g 0

3’, Power5 [tanium?2 Opteron G5 Itanium?2
. Federation Myrinet InfiniBand InfiniBand  QSNet2
3 16 16 64 16 32
=

Processor/Network/Thread Count
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UPC-level
implementation of
collectives

Tree-based

broadcast - show
best performance
across tree geom.

memput_signal
competitive with
MPI broadcast
(shown for
comparison)
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Performance Comparison: All-Reduce-All

All Reduce All (Opteron/InfiniBand, 64 Nodes)
350
o [ S » Dissemination-based
ol implementations of
250 all-reduce-all collective
% 200
: 150 ,.,-/'/./r memput_signal
consistently outperforms
s memput+strict flag,
50 —o—e—w competitive w/ MPI
-§ ’ 1 | 2 | 4 | 8 | 16 | 32 | 64 ‘128 | 256 | 512 ‘1024
@ Cbs per Thrad Over a 65% improvement
g in latency at small sizes
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Using Signaling Put
in Application Kernels
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Performance Comparison: SPMV

SPMV: 9pt 2D-stencil on 1024x1024 grid (Opteron/infinband, 64 Nodes)

-

2.5

L
—

A
(&)

Time (ms)

—

m Global Barrier
= Comm Barrier
o Comm Recv
0.5 m Comm Send
m Computation

barrier memput + strict flag nonblocking memput_signal
memput + strict flag

75% improvement in synchronous communication time
28% improvement in total runtime (relative to barrier)

(down is good)
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Performance Comparison: Conjugate Gradient

CG: 9pt 2D-stencil matrix on 1024 x 1024 grid

(Opteron/infinband, 64 Nodes)

9
8
7
6 J - f
25
£
= 4
3 = Barrier |
1 All Reduce All
2 B Local Computation| |
1 = SPMV |
-0
-8 barrier / nonblock memput + memput_signal /
8., memput + strict flag strict/ memput_signal
» memput + strict flag
§ SPMV / All Reduce Implementation
(®)
=)

Incorporates both
SPMV and All Reduce
iInto an app kernel

memput_signal speeds
up both SPMV and All
Reduce portions of the
application

Leads to an 15%

Improvement in overall
running time
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-
Conclusions

- Proposed a signaling put extension to UPC
- Friendly interface for synchronizing, one-sided data transfers

 Allows coupling data transfer & synchronization when needed
« Concise and expressive

- Enable high-perf. implementation by encapsulating the right semantics
 Allows overlap and low-latency, single message on the wire

- Provides the strengths of message-passing in a UPC library
* Remains true to the one-sided nature of UPC communication
+ Avoids the downfalls of full-blown message passing
- Implementation status
 Functional version available in Berkeley UPC 2.2.2
« More tuned version available in 2.3.16 and upcoming 2.4 release

* Future work
* Need more application experience

. Incorgorate extension in future revision of UPC standard Iibrarx
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