

Center for Scalable Application Development Software: Application Engagement

Ewing Lusk (ANL) Gabriel Marin (Rice)

CScADS Midterm Review

1

Application Engagement

- Workshops (2 out of 4) for outreach
 - Leadership Class Machines, Applications, and Performance
 - Scientific Data Analysis and Visualization for Petascale Computing
- Other application engagement
 - continued interactions with workshop participants
 - focused engagement with specific application groups

Workshop on Leadership Class Machines, Applications, and Performance

- Goal: Jumpstart productive application use of DOE's large-scale facilities at ANL, ORNL, and NERSC
- Target audience
 - code developers; not necessarily P.I.'s
 - from DOE SciDAC and INCITE programs
- Content (presented by 12 speakers)
 - leadership machine architectures
 - programming at scale for performance
 - tools for understanding code behavior
 - I/O and visualization
 - hands-on sessions (time for hacking, with sysadmins available)

Attendees and Their Projects

- 2008: 25 attendees
 - 12 from projects with INCITE awards
 - 15 from other SciDAC projects
- Wide range of application areas, e.g.:
 - climate INCITE
 - FACETS SciDAC (fusion)
 - CSCAPES SciDAC
 - COMPASS SciDAC (particle accelerator modeling) also INCITE
 - biofuels INCITE
 - combustion in gas turbines INCITE

Interactions Born at the Workshops

- Revised approach to parallel I/O for sparse matrix data structures, used in part of UNEDF SciDAC. Interactions continued at recent Nuclear Physics Exascale meeting
- Alternate file format and parallel I/O strategy for PHASTA. Continued at ALCF workshop in January.
- Turbulent flow project for Center for Turbulence Research at Stanford. I/O strategies on Franklin (NERSC machine). Ported code to BG/P. Continued interactions with ALCF staff
- Worked with CERFACS on problem decomposition; student visited Argonne for further optimization work.
- Formed collaboration with NERSC on HDF5 issues.
- Worked closely over the year with GFMC part of UNEDF SciDAC.

Lasting relationships formed at Snowbird workshops

Focused Engagement Activities

- Need representative applications to drive compilers/tools research
- CScADS collaborates in PERI Tiger Teams
 - PERI Tiger Teams engage CScADS with applications
 - CScADS extends PERI Tiger Team efforts
 - develop software and methods to help application teams
 - GTC: particle-in-cell simulation of turbulent plasma in a tokamak
 - FLASH: block structured AMR to simulate astrophysical flashes
 - S3D: direct numerical simulation of combustion using dense arrays

The Challenge of Application Tuning

- Performance measurement tools identify
 - sections of code that execute inefficiently
 - loops that incur a high fraction of a particular hardware event
- Knowing where cache misses occur is seldom enough
 - data reuse is not a local phenomenon
- Assess tuning opportunities through modeling
 - identify performance bottlenecks due to application characteristics
 - instruction level parallelism, data reuse patterns, data layout
 - provide insight into code transformations for improving performance
 - PERI aims to provide guidance for next generation procurements
 - CScADS aims to help improve application performance
 - understand performance impact for a target architecture
 - understand mismatch between application and architecture
 - impact of ILP depends on machine width, execution unit types

Modeling Toolkit Design Overview

Understanding Data Reuse

Identify data reuse patterns using reuse distance

- Characterize reuse patterns by a tuple of scopes
 source, destination, carrying scopes
- Understand not only where cache misses occur
 - identify where data has been previously accessed
 - identify which algorithmic loop is driving the reuse
 - important for understanding how to improve the reuse

GTC example -spatial reuse

Missed Opportunities for Spatial Locality

- Problem: inefficient use of caches
 - long temporal or spatial data reuse
 - captured by memory reuse distance
 - unused data in cache lines
 - data fetched in blocks; some words never accessed
 - fragmentation factor = <u>data fetched but never accessed</u> total fetched data
- Approach
 - compute fragmentation factors for references
 - use static analysis to understand access stride and fraction of data never accessed
 - report misses due to data fragmentation at each level

Application Engagement: GTC

- GTS: simulates turbulent plasma in tokamak reactors
 - 3D particle-in-cell code; 1D decomposition along toroidal direction
 - charge: deposit charge from particles to grid points
 - solve: compute the electrostatic potential and field on grid points
 - push: compute the force on each particle from nearby grid points
- Used measurement and modeling tools developed at Rice with CScADS support to pinpoint performance losses
 - poor spatial locality due to vector of structures representation for ions
 - unrealized opportunities for temporal reuse between loops over ions
- Improving node performance
 - manually transform to structure of vectors
 - manually apply fusion and blocking to improve temporal reuse
 - transmit improvements back to GTC/GTS code teams

- Metrics normalized to measurements of original code
- Lower is better

GTS: Locality Degrades as Ions Swirl

- Locality is best when particles are sorted in cell order
 - -potential computation uses cell data only
 - -charge deposition and particle pushing involve interactions between particles and cells
- Initially particles are uniformly distributed in cell order

GTS: Locality Degrades as Ions Swirl

- Locality is best when particles are sorted in cell order
 - -potential computation uses cell data only
 - -charge deposition and particle pushing involve interactions between particles and cells
- Over time, the particle distribution diverges from cell order

GTS: Potential Improvement from Reordering

- Locality degrades gradually at run-time
- Assumptions:
 - -periodic particle reordering restores locality and performance
 - -performance degrades at similar rate after each sorting step

GTS: Compute Optimal Sorting Interval

h(t) = average time step cost with sorting

Parallel Performance Results

GTC normalized execution time with 64 processes

- Combined optimizations reduce GTS execution time by
 - -37% on Itanium2 cluster
 - —21% on Cray XT and Cray XD1

Application Engagement: FLASH

FLASH suffers from poor spatial locality due to data layout

(values predicted for Sedov test case)

Application Engagement: S3D

- Direct numerical simulation (DNS) of turbulent combustion
 - state-of-the-art code developed at CRF/Sandia
 - PI: Jaqueline H. Chen, SNL
 - 2007/2008 INCITE awards at NCCS
 - pioneering application for 250TF Jaguar system
- Extend performance analysis work of PERI Tiger team
 - use HPCToolkit to locate single-core performance bottlenecks
 - compiler inserted array copies
 - streaming calculations with low data reuse
 - loop nests with recurrences
 - identified opportunities for compiler-based improvement
 - enhanced LoopTool to address S3D's needs
 - improved loop nests with LoopTool's semi-automatic transforms
 - transformed code is now part of S3D's source base
 - used HPCToolkit to assess multicore scaling issues

J H Chen et al 2009 Computational Science and Discovery 2 015001 (31pp)

S3D: What Opportunities Exist?

LoopTool: Loop Optimization of Fortran

Optimization of S3D Diffusive Flux Loop

Ongoing Work

- Beginning to study new applications
 PFLOTRAN, POP
- Modeling toolkit
 - replacing EEL (licensed) with Dyninst toolkit (open source)
 - create open source multi-platform tool
 - status: testing instrumentation using GTC on Opteron platform
- LoopTool
 - being prepared for deployment in 2009