
1 CScADS Midterm Review April 22, 2009

Center for Scalable Application
Development Software: 

Performance Tools

Barton Miller (Wisconsin)
John Mellor-Crummey (Rice)

Ewing Lusk (ANL)

2

 Toward Performance Tools for the Petascale
•  A multi-prong effort towards

–  new tool ideas
–  realization in software
–  feedback from engagement with peer tool groups and application teams

•  Targeting high and low
–  IBM Blue Gene and Cray XT leadership class platforms
–  multicore processors

•  Key technology areas
–  binary analysis
–  instrumentation and measurement
–  performance and differential analysis
–  user interfaces and visualization

Engaging the Tools Community
CScADS Workshops on Performance Tools

•  Problem
–  measurement, analysis, and modeling of application performance on

petascale systems is too large for any one group to develop alone
•  Approach

–  promote development of sharable software components
–  accelerate the development of performance tools for leadership

computing platforms.
•  Participants from

–  AMD, Cray, HP, IBM, Intel, Sun
–  ORNL, LBNL, PNL, LANL, LLNL, Sandia, BSC, Krell Institute, FZJ
–  Berkeley, Maryland, New Mexico, UNC, Oregon, PSU, Rice,

Tennessee, UAB, Wisconsin
•  Impact

–  effort to catalyze collaboration among the tools community is
beginning to bear fruit

3

Engaging the Tools Community
CScADS Workshops on Performance Tools

•  A meeting of experts; a heavy focus on problems and solutions
•  Detailed presentations, with live demos encouraged
•  An emphasis on “what can you share with others?” and “what are

you using from others?”
•  Multi-day working groups on collaborations and sharing

–  performance data XML formats
–  binary analysis
–  performance visualization components
–  stack walking: issues, approaches, and interfaces
–  control flow parsing
–  access to hardware event counters
–  scalable I/O for performance data
–  trace generation and processing

4

Engaging the Tools Community
CScADS Workshops on Performance Tools

Some outcomes
–  libmonitor (Rice) for sampling or tracing operations at the library API

level, now in use by Open|Speedshop – a DOE tri-labs performance
tools project.

–  SymtabAPI (Wisconsin) for parsing symbol information from object
files, now in use by the HPCToolkit project.

–  MRNet (Wisconsin) for multicast and reduction communication for tool
control, now in use by the LLNL as part of the STAT debugger project.

–  sionlib (Jülich) for parallel access to task-local files, being targeted for
us in HPCToolkit.

–  XED2 (Intel) instruction decoder for analysis of x86 machine
instructions, now in use by HPCToolkit.

–  Perfmon2 for hardware-based performance monitoring for Linux, now
used by Cray as part of their Compute Node Linux operating system
for the Cray XT.

5

Component-based Approach
Infrastructure for Performance Tools

•  Increases sharing and reuse
–  reduces redundant development

•  Large research tool groups can focus on their priority missions
without having to develop all parts of an end-to-end solution

•  Small research groups (young investigators!) can explore focused
research topics with a software code base comparable to that of
larger groups

Collaborations with internal (Rice, Wisconsin) and external (LLNL,
 Cray, Intel, Berkeley, Oregon, BSC, Jülich) groups on various APIs

Workshop discussions are a critical part of the design process

6

Under
Development

Future Work

Dyninst Component Roadmap

Binary

Process
Control

Win

Linux

AIX

Symtab
API

PE

ELF

COFF

IA32

AMD64

Power

Instruction
API

AST

Code
Gen

Binary
Patching

Stackwalker
API

DepGraph
API

Parsing
API

Current
Components

8

The Deconstruction of DynInst
Realizing our Push Toward Tool Components

•  InstructionAPI
–  abstract representation of instruction decode and address modes.

•  SymtabAPI
–  abstraction of symbols, debug and dynamic linkage information
–  updating to support binary rewriting

•  StackwalkerAPI
–  walk stacks: first or third party, standard vs. optimized frames, custom

frames (from instrumentation or exceptions)
–  uses a variety of techniques from full symbols and libunwind to

stripped binaries requiring control-flow analysis
–  true synthesis of Wisconsin and Rice algorithms and code

•  CFGAPI
–  platform independent representation of Control Flow Graph,

associated query routines, and extensible data structures

8 CScADS (all or partially) funded components are underlined

9

The Deconstruction of DynInst
Just over the Horizon

•  PDGAPI
–  platform independent representation of Program Dependence Graph,

including DDG and CDG API’s.
•  ProcessControlAPI

–  operating system independent interface for controlling processes and
threads, monitoring events and state changes and reading and writing
the application address space (tricky in for multi-threaded aps).

•  CodeGenAPI
–  instruction set independent code generator for incremental and

dynamically generated code.
–  lightweight and fast
–  context based, considering, e.g., register and stack frame use.

•  CodePatchAPI
–  patch area allocation, code relocation, and code hooking.

9

10

libmonitor
An Interface between OS and First-party Tools

•  Processes
–  parent: pre_fork, post_fork
–  child: init_process, fini_process

•  Threads
–  parent: init_thread_support, thread_pre_create, thread_post_create
–  child: init_thread, fini_thread

•  MPI
–  mpi_pre_init, mpi_post_init, mpi_pre_fini, mpi_post_fini

•  Signals
–  selectively catch signals before or instead of delivering to application

•  Intercept functions to maintain control
–  e.g. dlopen, sigmask, pthread_sigmask, exit, signal, sigaction

•  Stack unwinding support
–  stack_bottom; identification of PC for bottommost frame

10

11

 A Few Component Consumers

•  Rice: using SymtabAPI and
libmonitor in HPCToolkit

•  Krell Institute (Open|SpeedShop)
using SymtabAPI to get symbols
for their offline collectors; using
libmonitor in first-party tools

•  UNC and LLNL: using SymtabAPI
and StackwalkerAPI for PnMPI
project

•  LLNL (STAT project): using
SymtabAPI and StackwalkerAPI

•  SiCortex: porting SymtabAPI to
Linux/MIPs; using libmonitor
underneath HPCToolkit

•  Cray: started work using
StackwalkerAPI and SymtabAPI for
new APT (Abnormal Process
Termination) system

•  Univ. of Oregon: using binary
rewriter as part of TAU
instrumentation

•  Forschungszentrum Jülich: using
SymtabAPI for Scalasca

•  Berkeley (BitBlaze): APIs for binary
processing (security tools)

•  BSC: using Dyninst for function-
level instrumentation

HPCToolkit

12

13

HPCToolkit Goals
•  Accurate measurement of complex parallel codes

–  large, multi-lingual programs
–  fully optimized code: loop optimization, templates, inlining
–  binary-only libraries, sometimes partially stripped
–  complex execution environments

•  dynamic loading or static binaries
•  SPMD parallel codes with threaded node programs
•  batch jobs

–  production executions
•  Effective performance analysis

–  pinpoint and explain problems
•  intuitive enough for scientists and engineers
•  detailed enough for compiler writers

–  yield actionable results
•  Scalable to petascale systems

14

•  Binary-level measurement and analysis
–  observe executions of fully optimized, static or dynamic binaries

•  Sampling-based measurement
–  minimize systematic error and avoid blind spots
–  support data collection for large-scale parallelism

•  Associate metrics with both static and dynamic context
–  loop nests, procedures, inlined code, calling context

•  Synthesize derived performance metrics
–  diagnosis requires more than one metric
–  derived metrics: “miss rate,” “scalability loss”

•  Support top-down performance analysis
–  start with what’s most important
–  keep unnecessary detail out of the way

•  Support multiple views of performance data
–  different views help pinpoint different problems

HPCToolkit Approach

15

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database presentation

[hpcviewer]

program
structure

HPCToolkit Performance Tools

16

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database presentation

[hpcviewer]

program
structure

HPCToolkit Performance Tools

•  Compile and link for production
–  with full optimization

•  For statically-linked executables (e.g. for Cray XT or BG/P)
–  use hpclink script to incorporate monitoring library

17

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database presentation

[hpcviewer]

program
structure

HPCToolkit Performance Tools

Measure execution unobtrusively
–  launch optimized application binaries
–  collect call path profiles of events of interest

18

Call Path Profiling

Call path sample

instruction pointer

return address

return address

return address

 Calling Context Tree (CCT)

Overhead proportional to sampling frequency ...
... not call frequency

Measure and Attribute Costs in Context
•  Sample timer or hardware counter overflows
•  Gather calling context using stack unwinding

19

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database presentation

[hpcviewer]

program
structure

HPCToolkit Performance Tools

Analyze binary to recover program structure
–  analyze machine code, line map, and debugging information
–  extract loop nesting information and identify inlined procedures
–  map transformed loops and procedures back to source

20

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database presentation

[hpcviewer]

program
structure

HPCToolkit Performance Tools

•  Combine multiple profiles
–  multiple threads; multiple processes; multiple executions

•  Correlate measurements to static and dynamic program structure

21

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database presentation

[hpcviewer]

program
structure

HPCToolkit Performance Tools

•  Explore performance data from multiple perspectives
•  Rank order by metrics to focus on what’s important
•  Compute derived metrics to gain insight

MOAB Mesh Library from ITAPS

costs for
•  inlined procedures
•  loops
•  function calls in full context

calling context
view

23

 Pinpointing Scalability Bottlenecks

?

Note: higher is better

24

 Bottleneck Analysis Challenges
•  Parallel applications

–  modern software uses layers of libraries
–  performance is often context dependent

•  Monitoring
–  bottleneck nature: computation, data movement, synchronization?
–  size of petascale platforms demands acceptable data volume
–  low perturbation for use in production runs

Example climate code skeleton

main

ocean atmosphere

wait wait

sea ice

wait

land

wait

25

 Analyzing Weak Scaling: 1K to 10K processors

- =

10K 1K

 FLASH from University of Chicago

Cellular detonation

Compressed turbulence

Helium burning on neutron stars

Richtmyer-Meshkov instability

Laser-driven shock instabilities
Nova outbursts on white dwarfs Rayleigh-Taylor instability

Flame-vortex interactions

Gravitational collapse/Jeans
 instability

Wave breaking on white dwarfs

Shortly: Relativistic accretion onto NS

Orzag/Tang MHD
vortex

Type Ia Supernova

Intracluster interactions

Magnetic
Rayleigh-Taylor

Text and figures courtesy of FLASH Team, University of Chicago

•  Parallel, adaptive-mesh refinement (AMR) code
•  Block structured AMR; a block is the unit of computation
•  Designed for compressible reactive flows
•  Can solve a broad range of (astro)physical problems
•  Portable: runs on many massively-parallel systems
•  Scales and performs well
•  Fully modular and extensible: components can be

 combined to create many different applications

27

Viewing a GTC call stack sample trace with hpctraceviewer
•  32 process MPI program
•  Each process has a pair of threads managed with OpenMP

 Viewing Traces of Asynchronous Samples

28

Multiple Levels of Abstraction
•  Call stack sample trace for S3D
•  8 cores on a dual quad-core node; OpenMPI

call stack depth 15 call stack depth 8

Novel Capabilities of HPCToolkit

29

Measurement
•  Binary analysis for (1) recovering functions in partially stripped code, (2)

unwinding fully-optimized code, (3) recovering program structure
•  Nearly perfect call stack sampling of fully optimized code with low overhead

Binary Analysis for Measurement and Attribution of Program Performance,
PLDI, June 2009. To appear.

Pinpoint Performance Losses in Multithreaded Executions
Attribute insufficient parallelism and parallelization overhead for multithreaded

programs on a work-stealing runtime using sampling
Effective Performance Measurement and Analysis of Multithreaded

Applications, PPoPP, February 2009.

Pinpoint Scalability Bottlenecks using Differential Profiling
Scalability Analysis of SPMD Codes using Expectations, ICS, June 2007

Performance Analysis using Sampling on Leadership Platforms
Diagnosing Performance Bottlenecks in Emerging Petascale Applications,

Submitted to SC09

HPCToolkit Summary
•  Precise measurement with low overhead

–  e.g. PFLOTRAN scaling study on Cray XT
•  measured cycles, L2 miss, FLOPs, & TLB @ 1.5% overhead, 512 cores
•  unwind errors 148 out of 289M on 8192 cores

–  suitable for use on production runs
•  Insightful analyses
•  Actionable feedback
•  Scalable to the petascale
•  Newly operational on leadership computing platforms

–  Cray XT (CNL) : March 27, 2009
–  Blue Gene/P: April 8, 2009
–  Opteron+IB (Linux): February 12, 2009 (TACC’s Ranger)

30

Jumpshot

31

Performance Visualization with Jumpshot
•  For detailed analysis of parallel program

 behavior, timestamped events are collected
 into a log file during the run.

•  A separate display program (Jumpshot) aids
 the user in conducting a post mortem
 analysis of program behavior.

•  We use an indexed file format (SLOG-2) that
 uses a preview to select a time of interest
 and quickly display an interval, without ever
 needing to read much of the whole file.

Logfile

Jumpshot

Processes

Display

(clog slog)

Viewing Multiple Scales with Jumpshot

Each line represents
 1000’s of messages

Detailed view shows opportunities
 for optimization

1000x zoom

34

More on Jumpshot

•  Connection to other projects
–  distributed with MPICH2 (thousands of downloads per month)
–  Jumpshot viewer included as part of TAU, with converters
–  Berkeley UPC/GASP emits SLOG2 files for Jumpshot

•  Scalability minuses
–  use with a thousand time lines still a research issue
–  need adaptive summary for amalgamating messages

•  Scalability pluses
–  SLOG2 format allows interactive access to large trace files
–  summary states and messages
–  statistics view
–  can view subset of processes

•  Basic Jumpshot premise
–  sometimes you have to look at the details

34

35

Jumpshot
•  Using Jumpshot to study ADLB (Asynchronous Dynamic Load

Balancing) library used in UNEDF SciDAC
–  understanding very irregular behavior over time

35

