

Center for Scalable Application Development Software: System Software

Peter Beckman (ANL)

CScADS Midterm Review

April 22, 2009

1

CScADS ZeptoOS Research

- Exploring performance improvements for system software on leadership-class multicore platforms
- Focus
 - memory management
 - I/O forwarding and job control
 - communication software stack
- Benefits
 - foster software research on leadership computing platforms
 - extend the usage of leadership computing platforms

Motivation

- Memory Management
 - overhead of general-purpose paged memory (*not* OS jitter) key issue when running Linux on IBM Blue Gene
 - physically contiguous memory needed by some hardware devices
- I/O
 - 200K clients on current machines, millions on next generation—will file systems even be able to handle this?
 - Argonne's 557 TF Blue Gene/P (Intrepid):
 - 20% of the money spent on I/O
 - full memory dump takes over 30 minutes
 - I/O quickly becoming the bottleneck:
 - we need to make I/O as efficient as possible
 - flexibility

Memory Management on BG/P

- General purpose OS loses
 memory performance
 - worst case: standard Linux on ppc450 achieves only 20– 25% of the theoretical memory bandwidth due to high cost of TLB misses
- Solution
 - introduced Big Memory management to Linux
 - enables a compute task to access memory without TLB misses

Memory benchmark

Our Approach – Big Memory

Process Virtual Address Space

BG/P Compute Node Software Stack

- ZeptoOS Compute Node Linux
 - Big Memory for performance and torus DMA
- Deep Computing Messaging Framework (DCMF)
 - low-level communication layer that other communication APIs are built upon
- MPICH
- Unified Parallel C (UPC)

Zepto CN Linux

I/O Forwarding and Job Control

- ZOID (ZeptoOS I/O Daemon) provides
 - complete job management
 - file I/O and IP forwarding for Zepto Compute Node Linux
- Extensible through plugins
 - custom I/O forwarding APIs
 - e.g. file system client, communication layer
- Open, full source code available
 - enables independent computer science research
- Optimized performance
 - multithreading to hide latency
 - reduced context switching

ZeptoOS I/O Daemon (ZOID)

Architecture

Performance

ZeptoOS Results

Blue Gene/P Compute Node OS and I/O layer operational First prerelease for BG/P available, full release imminent

- Supports High Performance Computing (HPC) on BG/P
 - BG/P compute node software stack has been ported
 - MPICH is ready to use in SMP mode
 - Negligible performance penalty on NAS benchmarks
- Supports High Throughput Computing (HTC) on BG/P
 - Falkon task execution framework has been ported

LOFAR

LOw Frequency Array

- Revolutionary radio telescope
 - no dishes
 - *O*(10000) receivers
 - omni-directional
- Central processing
 - real time
 - Software
 - BG/L supercomputer

- Reorder, filter, correlate data
- Use zoid plug-in on I/O node

• Application on I/O node: no need for input cluster

Falkon: Managing 160,000 CPUs

DOCK: ~1M Tasks on 118,000 CPUs

- CPU cores: 118784
- Tasks: 934803
- Elapsed time: 7257 sec
- Compute time: 21.43 CPU years
- Average task time: 667 sec
- Relative Efficiency: 99.7%
- (from 16 to 32 racks)
- Utilization:
 - Sustained: 99.6%
 - Overall: 78.3%

GPFS

- 1 script (~5KB)
- 2 file read (~10KB)
- 1 file write (~10KB)
- RAM (cached from GPFS on first task per node)
 - 1 binary (~7MB)
 - static input data (~45MB)