

Center for Scalable Application Development Software: Center Overview

John Mellor-Crummey (Rice)

CScADS Midterm Review

1

Project Co-PIs and Senior Personnel

John Mellor-Crummey, Keith Cooper

Peter Beckman, Ewing Lusk

Jack Dongarra

Bart Miller

Katherine Yelick

SciDAC Program

 Portfolio of coordinated research to exploit the capabilities of emerging petascale platforms for computational science

- Research projects respond to
 - extraordinary difficulties of realizing sustained peak performance for scientific applications that require petascale computation
 - need for collaborative software environments that combine distributed resources and expertise to address complex questions

SciDAC-2 Mission

- Develop comprehensive scientific computing software infrastructure to enable petascale science
- Develop new generation of data management and knowledge discovery tools for large data sets

Center for Scalable Application Development Software

Goals

- Conduct research leading to the design and construction of software tools and systems to help applications scale to the petascale
 - focus on DOE Leadership Class Facilities and parallel systems composed of multicore processors
 - promote application-driven software systems research
 - promote research collaborations with DOE labs and centers, NSF (Teragrid), and industry (systems and software vendors)
- Catalyze activities within the CS community that will lead to
 visionary new ideas for application development support software
 - work with system vendors, application developers and library designers
 - promote community vision building through summer workshops
- Foster development of new tools by the CS community through support of common software infrastructure and standards

Scalable Application Development Software?

Software that helps applications scale in three different dimensions

- Scale from simple high-productivity languages on a laptop to efficient applications on high-end, single-processor workstations
- Scale from small numbers of processors to full machines consisting of thousands of processors with minimal loss of efficiency
- Scale from a single abstract program representation to tuned implementations for many different high-end machines and heterogeneous processors with minimal programming effort

A Refined Vision

- Provide open source software systems, tools, and components that address a spectrum of needs
 - directly usable by application experts
 - support development of enabling technologies by the CS community
- Target architectures of critical interest to DOE
 - Cray XT
 - Blue Gene/P
 - multicore processors in general
- Engage DOE application teams and vendors
- Engage the research community in SciDAC challenges

Vertical integration across the petascale software stack

- System software for leadership computing platforms
- Communication libraries
- Math libraries
- Open source compilers
- Performance tool infrastructure
- Performance tools
- Application engagement: analysis and tuning

Community Engagement

CScADS Summer Workshop Series

- Goals
 - identify challenges and open problems for leadership computing
 - brainstorm on promising approaches
 - foster collaborations between computer and application scientists
 - engage the broader community of enabling technology researchers
- Workshops to engage SciDAC and INCITE application teams
 - Leadership class machines, petascale applications, and performance
 - Scientific data analysis and visualization for petascale computing
- Workshops to foster development of enabling technologies
 - Autotuning for petascale systems
 - Performance tools for petascale computing
 - Libraries and algorithms for petascale applications

2009 Workshops at Granlibakken

Metrics for Success

- How well are the Summer Institute workshops functioning as a mechanism for two-way exchange of information?
 - as a way of familiarizing consumers with new developments
 - as a driver for change in the research and development plans
- How effectively is the research adapting to the needs of the community while keeping quality at the highest possible level?
- How effectively is the research effort directly interacting with application teams to understand their problems and using solution strategies to influence future directions?
- How effectively is the infrastructure development effort supporting the entire HPC software research community, both within and outside the center?
- How effective is the center at spinning out intermediate results as prototype tools and software for end users and at influencing commercial software products?

- Scientific and/or technical merit of the project
- Appropriateness of the proposed methods or approach
- Performance under existing award
- Competency of the investigators personnel
- Adequacy of the project resources
- Reasonableness and appropriateness of the budget and work plan

Schedule

9:00 - 9:10	Introduction	John Mellor-Crummey
9:10 - 9:30	System software	Pete Beckman
9:30 - 10:10	Libraries and compilers	Kathy Yelick
10:10 - 10:20	Break	
10:20 - 11:10	Performance tools	Bart Miller, John Mellor-Crummey, Rusty Lusk
11:10 - 11:40	Application engagement	Rusty Lusk, Gabriel Marin
11:40 - 12:00	Summary and plans	John Mellor-Crummey