
1 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu 

Introduction to UPC 
Presenter: Paul H. Hargrove (LBNL) 

Joint work with Berkeley UPC and Titanium Groups at 
Lawrence Berkeley Nat’l Lab & UC Berkeley 

Some slides adapted from 
Katherine Yelick and Tarek El-Ghazawi 



2 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu 

Context 
•  Most parallel programs are written using either: 

–  Message passing with a SPMD model 
•  Usually for scientific applications with C++/Fortran 
•  Scales easily 

–  Shared memory with threads in OpenMP, Threads+C/C++/F or Java 
•  Usually for non-scientific applications 
•  Easier to program, but less scalable performance 

•  Global Address Space (GAS) Languages take the best of both 
–  global address space like threads (programmability) 
–  SPMD parallelism like MPI (performance) 
–  local/global distinction, i.e., layout matters (performance) 
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Partitioned Global Address Space 
Languages 

•  Explicitly-parallel programming model with SPMD parallelism 
–  Static - Fixed at program start-up, typically 1 thread per core 

•  Global address space model of memory 
–  Allows programmer to directly represent distributed data structures 

•  Address space is logically partitioned 
–  Local vs. remote memory (two-level hierarchy) 

•  Programmer control over performance critical decisions 
–  Data layout and communication  

•  Performance transparency and tunability are goals 
–  Initial implementation can use fine-grained shared memory 

•  Multiple PGAS languages: UPC (C), CAF (Fortran), Titanium (Java) 
–  Newer generation: Chapel, X10 and Fortress 
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Global Address Space Eases 
Programming 

•  The languages share the global address space abstraction 
–  Shared memory is logically partitioned by thread 
–  Remote memory may stay remote: no automatic caching implied 
–  One-sided communication: reads/writes of shared variables 
–  Both individual and bulk memory copies  

•  Languages differ on details 
–  Some models have a separate private memory area 
–  Distributed array generality and how they are constructed 
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State of PGAS Languages 
•  A successful language/library must run everywhere 
•  UPC 

–  Commercial compilers available on Cray, SGI, HP machines 
–  Open source compiler from LBNL/UCB (source-to-source) 
–  Open source gcc-based compiler from Intrepid 

•  CAF 
–  Commercial compiler available on Cray machines 
–  Open source compiler available from Rice 

•  Titanium  
–  Open source compiler from UCB runs on most machines 

•  Common tools 
–  Open64 open source research compiler infrastructure 
–  ARMCI, GASNet for distributed memory implementations 
–  Pthreads, POSIX shared memory 
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UPC Overview and Design 
•  Unified Parallel C (UPC) is: 

–  An explicit parallel extension of ANSI C  
–  A partitioned global address space language 
–  Sometimes called a GAS language 

•  Similar to the C language philosophy 
–  Programmers are clever and careful, and may need to get close to 

hardware 
•  to get performance, but 
•  can get in trouble 

–  Concise and efficient syntax 
•  Common and familiar syntax and semantics for parallel C with simple 

extensions to ANSI C 
•  Based on ideas in Split-C, AC, and PCP 
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One-Sided vs. Two-Sided Messaging 

•  Two-sided messaging 
–  Message does not contain information about final destination 
–  Have to perform look up at the target or do a rendezvous 
–  Point-to-point synchronization is implied with all transfers 

•  One-sided messaging 
–  Message contains information about final destination 
–  Decouple synchronization from data movement 

•  What does the network hardware support? 
•  What about when we need point-to-point sync? 

–  Hold that thought… 

dest. addr. 
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data payload 
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GASNet Latency Performance 
•  GASNet implemented on top of Deep 

Computing Messaging Framework 
(DCMF) 
–  Lower level than MPI 
–  Provides Puts, Gets, AMSend, and 

Collectives 
•  Point-to-point ping-ack latency 

performance  
–  N-byte transfer w/ 0 byte 

acknowledgement 
•  GASNet takes advantage of 

DCMF remote completion 
notification 

–  Minimum semantics needed to 
implement the UPC memory model 

–  Almost a factor of two difference until 
32 bytes 

–  Indication of better semantic match to 
underlying communication system 
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GASNet Multilink Bandwidth 
•  Each node has six 850MB/s* 

bidirectional link 
•  Vary number of links from 1 to 6 
•  Initiate a series of nonblocking 

puts on the links (round-robin) 
–  Communication/

communication overlap 
•  Both MPI and GASNet asymptote 

to the same bandwidth 
•  GASNet outperforms MPI at 

midrange message sizes 
–  Lower software overhead 

implies more efficient 
message injection 

–  GASNet avoids rendezvous to 
leverage RDMA 

* Kumar et. al showed the 
maximum achievable bandwidth 
for DCMF transfers is 748 MB/s 
per link so we use this as our peak 
bandwidth 
See “The deep computing 
messaging framework: generalized 
scalable message passing on the 
blue gene/P supercomputer”, 
Kumar et al. ICS08 
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UPC (PGAS) Execution Model 
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UPC Execution Model 
•  A number of threads working independently in a SPMD fashion 

–  Number of threads specified at compile-time or run-time; available 
as program variable THREADS 

–  MYTHREAD specifies thread index (0..THREADS-1) 
–  upc_barrier is a global synchronization: all wait 
–  There is a form of parallel loop that we will see later 

•  There are two compilation modes 
–  Static Threads mode: 

•  THREADS is specified at compile time by the user 
•  The program may use THREADS as a compile-time constant 

–  Dynamic threads mode: 
•  Compiled code may be run with varying numbers of threads 
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Hello World in UPC 
•  Any legal C program is also a legal UPC program (well, almost) 
•  If you compile and run it as UPC with P threads, it will run P 

copies of the program. 
•  Using this fact, plus the identifiers from the previous slides, we can 

write a parallel hello world: 

#include <upc.h>  /* needed for UPC extensions */ 
#include <stdio.h> 

main() { 
  printf("Thread %d of %d: hello UPC world\n",  
         MYTHREAD, THREADS); 
} 
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Example: Monte Carlo Pi Calculation 
•  Estimate Pi by throwing darts at a unit square 
•  Calculate percentage that fall in the unit circle 

–  Area of square = r2 = 1 
–  Area of circle quadrant = ¼ * π r2 = π/4  

•  Randomly throw darts at x,y positions 
•  If x2 + y2 < 1, then point is inside circle 
•  Compute ratio: 

–  # points inside / # points total 
–   π = 4*ratio  

r =1 
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Each thread calls “hit” separately 

Initialize random in C 
library 

Each thread can use input 
arguments 

Each thread gets its own copy 
of these variables 

Pi in UPC  
•  Independent estimates of pi: 
  main(int argc, char **argv) { 
    int i, trials, hits= 0; 
    double pi; 

    if (argc != 2)trials = 1000000; 
    else trials = atoi(argv[1]); 

    srand(MYTHREAD*17); 

    for (i=0; i < trials; i++) hits += hit(); 
    pi = 4.0*hits/trials; 
    printf("PI estimated to %f.", pi); 
  } 
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Helper Code for Pi in UPC 
•  Required includes: 
    #include <stdio.h> 
    #include <stdlib.h> 
    #include <upc.h>  

•  Function to throw dart and calculate where it hits: 
  int hit(){ 
    double x = ((double) rand()) / RAND_MAX; 
    double y = ((double) rand()) / RAND_MAX; 
    if ((x*x + y*y) <= 1.0) { 
         return(1); 
    } else { 
         return(0); 
    } 
  } 
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Shared vs. Private Variables 
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Private vs. Shared Variables in UPC 
•  Normal C variables and objects are allocated in the private memory 

space for each thread. 
•  Shared non-array variables are allocated only once, with thread 0 
     shared int ours;  // use sparingly: performance 
     int mine; 
•  Shared variables may not have dynamic lifetime:  may not occur in a 

in a function definition, except as static. 

Shared 

G
lo

ba
l a

dd
re

ss
 

sp
ac

e 

Private 
mine:  mine:  mine:  

Thread0   Thread1                                       Threadn 

ours:  



18 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu 

Pi in UPC: Shared Memory Style 
shared variable to record hits 

divide work up evenly 

accumulate hits 

What is the problem with this program? 

•  Parallel computing of pi, but with a bug 
  shared int hits = 0; 
  main(int argc, char **argv) { 
      int i, my_trials = 0; 
      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)    
        hits += hit(); 
      upc_barrier; 
      if (MYTHREAD == 0) { 
        printf("PI estimated to %f.", 4.0*hits/trials); 
      }} 
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UPC Synchronization 
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UPC Global Synchronization 
•  UPC has two basic forms of barriers: 

–  Barrier: block until all other threads arrive  
 upc_barrier 

–  Split-phase barriers 
   upc_notify;  this thread is ready for barrier 
      do computation unrelated to barrier 
   upc_wait;      wait for others to be ready 

•  Optional labels allow for debugging 
#define MERGE_BARRIER 12 
if (MYTHREAD%2 == 0) { 
     ... 
     upc_barrier MERGE_BARRIER;   
} else { 
     ... 
     upc_barrier MERGE_BARRIER; 
} 
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Synchronization - Locks 
•  Locks in UPC are represented by an opaque type: 

upc_lock_t 
•  Locks must be allocated before use: 

upc_lock_t *upc_all_lock_alloc(void); 
  collective call - allocates 1 lock, same pointer to all threads 
upc_lock_t *upc_global_lock_alloc(void); 
     non-collective - allocates 1 lock per caller 

•  To use a lock: 
void upc_lock(upc_lock_t *l) 
void upc_unlock(upc_lock_t *l) 
  use at start and end of critical region 

•  Locks can be freed when not in use 
void upc_lock_free(upc_lock_t *ptr); 
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Pi in UPC: Shared Memory Style 

create a lock 

accumulate hits 
locally 

accumulate across 
threads 

•  Parallel computing of pi, without the bug 
  shared int hits = 0; 
  main(int argc, char **argv) { 
      int i, my_trials, my_hits = 0; 
  upc_lock_t *hit_lock = upc_all_lock_alloc(); 

      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)  
         my_hits += hit(); 
      upc_lock(hit_lock); 
      hits += my_hits; 
      upc_unlock(hit_lock); 
      upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*hits/trials); } 
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Pi in UPC: Shared Array Version 

all_hits is shared 
by all processors, 
just as hits was 

update element with 
local affinity 

•  Alternative fix to the race condition  
•  Have each thread update a separate counter: 

–  But do it in a shared array 
–  Have one thread compute sum 

shared int all_hits [THREADS]; 
main(int argc, char **argv) { 
  … declarations an initialization code omitted 
  for (i=0; i < my_trials; i++)  
    all_hits[MYTHREAD] += hit(); 
  upc_barrier; 
  if (MYTHREAD == 0) { 
    for (i=0; i < THREADS; i++) hits += all_hits[i]; 
    printf("PI estimated to %f.", 4.0*hits/trials); 
  }} 
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Collectives 
•  UPC has support for many standard collectives (in latest language spec) 

–  Data Movement: Broadcast, Scatter, Gather, Allgather, Exchange (i.e. 
Alltoall) 

–  Computational: Reductions and Prefix Reductions 
•  Shared data semantics complicates when data is considered safe to read 

or modify 
•  Language lets user specify looser synchronization requirements (i.e. 

when is source data readable by the collective or modifiable) 
–  Looser synchronization allows better implementation in runtime 
–  Loose (NO): Data will not be touched within the current barrier phase  
–  Medium (MY): Thread will not access remote data associated to 

collective without point-to-point synchronization or a barrier 
–  Strict (All): Can access any and all data associated with a collective 

without synchronization (i.e. handled w/in the collective)  
–  Defaults are to use “strict” – safety over speed 
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Pi in UPC: Data Parallel Style 

summation over 
THREADS blocks 
of 1 integer each 

barrier replaced by collective sync flags 

•  The previous versions of Pi works, but is not scalable: 
–  On a large # of threads, the summation will be a bottleneck 

•  Use a reduction for better scalability 

  shared int all_hits [THREADS], hits; 
  main(int argc, char **argv) { 
      … declarations an initialization code omitted 
      for (i=0; i < my_trials; i++)  
         all_hits[MYTHREAD] += hit(); 
      upc_all_reduceI(&hits, all_hits, UPC_ADD, 
                      THREADS, 1, NULL, 
                      UPC_IN_MYSYNC|UPC_OUT_MYSYNC); 
      // upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*hits/trials);} 



26 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu 

Recap: Private vs. Shared Variables 
in UPC 

•  We saw several kinds of variables in the pi examples 
–  Private scalars (my_hits) 
–  Shared scalars (hits) 
–  Shared arrays (all_hits) 
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Work Distribution Using 
upc_forall 
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Example: Vector Addition 

 /* vadd.c */ 
 #include <upc_relaxed.h> 
#define N 100*THREADS 

shared int v1[N], v2[N], sum[N]; 
void main() { 

 int i; 
 for(i=0; i<N; i++) 

   if (MYTHREAD == i%THREADS) 
     sum[i]=v1[i]+v2[i]; 
} 

• Questions about parallel vector additions: "
• How to layout data (here it is cyclic, more info later)"
• Which processor does what (here it is “owner computes”)"

cyclic layout 

owner computes 
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•  The idiom in the previous slide is very common 
–  Loop over all; work on those owned by this thread 

•  UPC adds a special type of loop 
    upc_forall(init; test; loop; affinity) 
      statement; 

•  Programmer is asserting that the iterations are independent 
–  Undefined if there are dependencies across threads 

•  Affinity expression indicates which iterations will run on each thread. 
It may have one of two types: 
–  Integer: (affinity%THREADS) == MYTHREAD 
–  Pointer: upc_threadof(affinity) == MYTHREAD 

•  Syntactic sugar for loop on previous slide 
–  Some compilers may do better than this, e.g.,  

  for(i=MYTHREAD; i<N; i+=THREADS) stmt; 
–  Rather than having all threads iterate N times: 

      for(i=0; i<N; i++) if (MYTHREAD == i%THREADS) stmt; 

Work Distribution with upc_forall 
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• The vadd example can be rewritten as follows 

• Affinity of “&sum[i]” or “sum+i” are equivalent to “i” 
• The code would still be correct (but potentially slow) if the 
affinity expression were “i+1” rather than “i”. 

Vector Addition with upc_forall 

#define N 100*THREADS 

shared int v1[N], v2[N], sum[N]; 

void main() { 
 int i; 
 upc_forall(i=0; i<N; i++; i)        

                 sum[i]=v1[i]+v2[i]; 
} 

The cyclic data 
distribution may 
perform poorly on 
some machines"
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Distributed Arrays in UPC 
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Shared Arrays Are Cyclic By Default 
•  Shared scalars (when allocated statically) always live in thread 0 
•  Shared arrays are spread over the threads 
•  Shared array elements are spread across the threads 

shared int x[THREADS]        /* 1 element per thread */ 
shared int y[3][THREADS] /* 3 elements per thread */ 
shared int z[3][3]     /* 2 or 3 elements per thread here*/ 

•  In the pictures below, assume THREADS = 4 
–  Red elts have affinity to thread 0 

x 

y 

z 

As a 2D array, y is 
logically blocked by 
columns 

Think of linearized C 
array, then map it 
round-robin 

z is not, since THREADS!=3 
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Layouts in General 
•  All static non-array objects have affinity with thread zero. 
•  Array layouts are controlled by layout specifiers: 

–  Empty or [1] (cyclic layout) 
–  [*] (blocked layout) 
–  [0] or [] (indefinite layout, all on 1 thread) 
–  [b] (fixed block size, aka block-cyclic) 

•  The affinity of an array element is determined by: 
–  block size, a compile-time constant 
–  and THREADS.   

•  Element i has affinity with thread  
        (i / block_size) % THREADS 

•  In 2D and higher, linearize the elements as in a C representation, and 
then use above mapping 
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More on Shared Arrays 
•  Shared arrays are just data allocated on different processors 

–  Can be cast into any block size 
–  Casting just renumbers indices of shared array (data doesn’t move!) 
–  Example with 4 threads  

•  Allocate an array:  
•  shared int *A = upc_all_alloc(THREADS, sizeof(int)*4) 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

p=(shared [4] int*) A  

0 1 8 9 

2 3 10 11 

4 5 12 13 

6 7 14 15 

q=(shared [2] int*) A  

0 4 8 12 

1 5 9 13 

2 6 10 14 

3 7 11 15 

r=(shared [1] int*) A  

T0 

T1 

T2 

T3 
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UPC Matrix Vector Multiplication 
Code 

#define N 1024 
shared [N*N/THREADS] int A[N][N]; /*blocked row-wise*/ 
shared [N/THREADS] int b[N], c[N]; /*blocked row-wise*/ 

void main (void) { 
 int i, j , l;  
 upc_forall( i = 0 ; i < N ; i++; &A[i][0]) { 
  /*affinity means I own row i of A*/ 
  c[i] = 0; 
  for ( l= 0 ; l< THREADS ; l++) 
   c[i] += a[i][l]*b[l];  

     /*no communication since all data accessed is local*/ 
 }} 

• Matrix-vector multiplication with matrix stored by rows"
• Contrived example: matrix is square & multiple of THREADS"
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UPC Matrix Multiplication Code 
#include <upc_relaxed.h> 
#define N  1024 
#define P  1024 
#define M  1024 

/* a and c are row-wise blocked shared matrices*/ 
shared [N*P/THREADS] int a[N][P]; 
shared [M*N/THREADS] int c[N][M]; 
shared [M/THREADS] int b[P][M]; /*column-wise blocking*/ 

void main (void) { 
 int i, j , l; /* private variables*/ 
 upc_forall(i = 0 ; i<N ; i++; &c[i][0]) { 
  for (j=0 ; j<M ;j++) { 
   c[i][j] = 0; 
   /*access remote data for matrix multiply: */ 
   for (l=0 ; l<P ; l++) c[i][j] += a[i][l]*b[l][j]; 
  } 

    } 
} 
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Domain Decomposition for UPC 

•  A (N × P) is decomposed row-wise 
into blocks of size (N × P) / 
THREADS as shown below: 

•  B(P × M) is decomposed column wise 
into M/ THREADS blocks as shown 
below: 

Thread 0 
Thread 1 

Thread THREADS-1 

 0 .. (N*P / THREADS) -1 
  (N*P / THREADS)..(2*N*P / THREADS)-1  

  ((THREADS-1)×N*P) / THREADS .. 
(THREADS*N*P / THREADS)-1  

Columns 0: (M/
THREADS)-1 Columns ((THREAD-1) × M)/

THREADS:(M-1) 

Thread 0 Thread THREADS-1 

• Note: N and M are assumed to be multiples of 
THREADS 

•  Exploits locality in matrix multiplication 

N 

P M 

P 
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Pointers to Shared vs. Arrays 

#define N 100*THREADS 
shared int v1[N], v2[N], sum[N]; /*cyclic layout*/ 
void main() { 

int i; 
shared int *p1, *p2; 

p1=v1; p2=v2; 
for (i=0; i<N; i++, p1++, p2++ )  

     if (i %THREADS == MYTHREAD) 
  sum[i]= *p1 + *p2; 

} 

•  In the C tradition, array can be access through pointers"
• Here is the naïve vector addition example using pointers"

v1 

p1 
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UPC Pointers  

int *p1;        /* private pointer to local memory */ 
shared int *p2; /* private pointer to shared space */ 
int *shared p3; /* shared pointer to local memory */ 
shared int  *shared p4; /* shared pointer to   
                           shared space */ 

Shared 
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p2:  
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p3:  

p4:  

Pointers to shared often require more storage and are more costly to dereference; 
they may refer to local or remote memory. 
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Common Uses for UPC Pointer Types  
int *p1;  
•  These pointers are fast (just like C pointers) 
•  Use to access local data in part of code performing local 

work 
•  Often cast a pointer-to-shared to one of these to get faster 

access to shared data that is local 
shared int *p2;  
•  Use to refer to remote data 
•  Larger and slower due to test-for-local + possible 

communication  
int *shared p3;  
•  Legal, but rarely useful.  Not recommended 
shared int  *shared p4;  
•  Use to build shared linked structures, e.g., a linked list 
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Bulk Data Movement and Nonblocking 
Communication 

•  Loops to perform element-wise data movement could potentially be slow 
because of network traffic per element 

•  Language introduces variants of memcpy to address this issue: 
•  upc_memcpy (source and destination are in shared space)  
•  upc_memput (source is in private / destination is in shared) 
•  upc_memget (source is in shared / destination is in private) 

•  Berkeley UPC extensions also provide nonblocking variants 
–  Allows comm/comp or comm/comm overlap 
–  Unlike MPI_Isend and MPI_Irecv, they are completely one sided and 

are a better semantic fit for  Remote Direct Memory Access (RDMA)  
–  Expected to be part of future UPC language standard 
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Extensions and Tricks of the 
Trade 



43 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu 

Pointer Directory 
•  Want each processor to dynamically allocate an array of k doubles of 

data on every processor that is remotely addressable. 
•  We want the k doubles to be contiguous so that they can be cast into 

local pointers and passed into C-library functions without extra copies 
–  If k is a compile constant: shared [k] double A[THREADS*k] else 

  shared [] double **my_dir; /*local array of UPC pointers*/ 
  shared double *global_array; /*cyclic by default*/ 
  my_dir = (shared [] double**)  
               malloc(sizeof(shared[] double*)*THREADS) 
  global_array = upc_all_alloc(THREADS, k*sizeof(double)); 
  for (i=0; i<THREADS; i++) { /*cyclic dist. implies elem i is 

on proc i so cast gets all memory w/ affinity to that proc*/ 
  my_dir[i] = (shared [] double*) &global_array[i];} 

To access element i on proc p (i can range from 0 to k-1) 
  my_dir [p][i] or *(my_dir [p]+i) 
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Berkeley UPC Extensions 
•  Nonblocking communication 

–  Ability to have comm/comp or comm/comm overlap 
–  Like MPI_Isend and Irecv, uses explicit handles that need to be 

synched.  
•  Semaphores and Point-to-Point synchronization 

–  Many applications need point-to-point synchronization 
–  Provide mechanisms to allow it in UPC without making it default 
–  Interface provides a one-sided signaling put which notifies remote 

processor when data has arrived 
•  Value-based collectives 

–  Simplify collective interface when you need collectives on scalar 
values:  hits = bupc_allv_reduce(int, my_hits, 0, UPC_ADD); 

•  Remote atomics 
–  Perform atomic operations on 32 or 64 bit ints in shared space 
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Point-to-Point Sync 
•  Many algorithms need point-to-point synchronization 

–  Producer/consumer data dependencies (one-to-one, few-to-few) 
•  Sweep3d, Jacobi, MG, CG, tree-based reductions, … 

–  Ability to couple a data transfer with remote notification 
–  Message passing provides this synchronization implicitly 

•  recv operation only completes after send is posted 
•  Pay costs for sync & ordered delivery whether you want it or not 

–  For PGAS, really want something like a signaling store (Split-C) 
•  Current mechanisms available in UPC: 

–  UPC Barriers - stop the world sync 
–  UPC Locks - build a queue protected with critical sections 
–  Strict variables - roll your own sync using the memory model 

•  Our Proposed Extension 
–  Use semaphores in shared space and provide “signalling put” 
–  User specifies remote semaphore to signal on completion of put 
–  Point-to-point synchronization is provided only when needed 
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Point-to-Point Synchronization (cont): 
•  Simple extension to upc_memput interface 
   void bupc_memput_signal(shared void *dst, void *src, size_t nbytes,  

          bupc_sem_t *s, size_t n); 

–  Two new args specify a semaphore to signal on arrival 
–  Semaphore must have affinity to the target 
–  Blocks for local completion only (doesn't stall for ack) 
–  Enables implementation using a single network message 
–  Also provide a non-blocking variant 

•  Target side calls wait on the same semaphore 
–  When the semaphore gets tripped the data has arrived and the target 

can safely use the buffer 
–  Interface: bupc_sem_wait(bupc_sem_t *s) 

                              bupc_sem_t *sem = …; 

bupc_memput_signal(…,sem);    bupc_sem_wait(sem); 
/* overlap compute */         /* consume data */ 

Thread 1                                  Thread 0 memput_signal: 
latency ~0.5 round-
trips 
allows overlap 
easy to use 
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Application Examples and 
Performance 
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Dense LU Factorization in UPC 
•  Direct methods have complicated dependencies 

•  Especially with pivoting (unpredictable communication) 
•  Especially for sparse matrices (dependence graph with holes) 

•  LU Factorization in UPC 
•  Use overlap ideas and multithreading to mask latency 
•  Multithreaded: UPC threads + user threads + threaded BLAS 

•  Panel factorization: Including pivoting 
•  Update to a block of U 
•  Trailing submatrix updates 

•  Written in a Data-centric way 
•  Shared address space and one-sided communication allows remote 

enqueue of work w/o interrupting the remote processors 
•  Dense LU done: HPL-compliant  
•  Sparse version underway 

•  Ref: “Multi-Threading and One-Sided Communication in Parallel LU 
Factorization” by Parry Husbands and Kathy Yelick [SC’07] 
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•  Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid 
– ScaLAPACK (block size 64) 25.25 GFlop/s (tried  several block sizes) 
– UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s 

•  n = 32000 on a 4x4 process grid 
– ScaLAPACK - 43.34 GFlop/s (block size = 64)  
– UPC - 70.26 Gflop/s (block size = 200) 

UPC HPL Performance 
• MPI HPL numbers from 
HPCC database 

• Large scaling:  
• 2.2 TFlops on 512p,  
• 4.4 TFlops on 1024p 
(Thunder) 

Joint work with Parry Husbands"
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Other Dense Linear Algebra Performance 
on BG/P 
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Case Study: NAS FT Benchmark 

•  Perform a large 3D FFT 
–  Molecular dynamics, CFD, image processing, signal processing, astrophysics, 

etc. 
–  Representative of a class of communication intensive algorithms 

•  Requires parallel many-to-many communication 
•  Stresses communication subsystem 
•  Limited by bandwidth (namely bisection bandwidth) of the network 

•  Building on our previous work, we perform a 2D partition of the domain 
–  Requires two rounds of communication rather than one 
–  Each processor communicates in two rounds with O(√T) threads in each  
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Strong Scaling 

•  Fix problem size at 2k x 1k x 1k and run in VN mode 
–  upto 4 racks of BG/P with 4 processes per node 

•  Analytic upper bound calculates megaflop rate based on time needed to transfer 
domain across the bisection 
–  Kink at 2048 cores indicates where 3D Torus is completed 

•  MPI Packed Slabs scales better than MPI Slabs 
–  Benefit of comm/comp. overlap outweighed by extra messages 

•  UPC (i.e. GASNet) Slabs consistently outperforms MPI 
–  Lower software overhead enables better overlap 
–  Outperforms Slabs by mean of 63% and Packed Slabs by mean of 37% 
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Weak Scaling 

•  Scale problem size with the number of cores 
–  computation for FFT scales as O(N log N) so thus flops don’t scale linearly 

•  UPC Slabs scales better than strong scaling benchmark 
–  Message size gets too small at high concurrency for strong scaling and becomes 

hard to utilize overlap 
•  MPI Packed Slabs outperforms MPI Slabs (most of the time) 

–  Again indicates that overlapping communication/computation is not a fruitful 
optimization for MPI 

•  UPC achieves 1.93 Teraflops while best MPI achieves 1.37 Teraflops 
–   40% improvement in performance at 16k cores. 
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Latest FFT Performance on BG/P (strong scaling) 
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Latest FFT Performance on BG/P (weak scaling) 
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Thanks! 
Any Questions? 
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Backup Slides 
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Blocked Layouts in UPC 
•  The cyclic layout is typically stored in one of two ways 

•  Distributed memory: each processor has a chunk of memory 
•  Thread 0 would have: 0,THREADS, THREADS*2,… in a chunk 

•  Shared memory machine: each thread has a logical chunk 
•  Shared memory would have: 0,1,2,…THREADS,THREADS+1,…  

•  What performance problem is there with the latter? 
•  What if this code was instead doing nearest neighbor averaging (1D stencil)? 

•  Vector addition example can be rewritten as follows 

blocked layout 
#define N 100*THREADS 

shared [*] int v1[N], v2[N], sum[N]; 

void main() { 
 int i; 
 upc_forall(i=0; i<N; i++; &sum[i])        

                 sum[i]=v1[i]+v2[i]; 
} 
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UPC Collectives in General 
•  The UPC collectives interface is available from: 

–  http://www.gwu.edu/~upc/documentation.html 
•  It contains typical functions: 

–  Data movement: broadcast, scatter, gather, … 
–  Computational: reduce, prefix, … 

•  Interface has synchronization modes: 
–  Avoid over-synchronizing (barrier before/after is simplest 

semantics, but may be unnecessary) 
–  Data being collected may be read/written by any thread 

simultaneously 
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2D Array Layouts in UPC 
•  Array a1 has a row layout and array a2 has a block row layout. 
             shared [m] int a1 [n][m];  
      shared [k*m] int a2 [n][m]; 

•  If (k + m) % THREADS = = 0 them a3 has a row layout 
     shared int a3 [n][m+k]; 
•  To get more general HPF and ScaLAPACK style 2D blocked 

layouts, one needs to add dimensions.   
•  Assume r*c = THREADS; 
   shared [b1][b2] int a5 [m][n][r][c][b1][b2]; 
•  or equivalently 
    shared [b1*b2] int a5 [m][n][r][c][b1][b2]; 
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Notes on the Matrix Multiplication 
Example 

•  The UPC code for the matrix multiplication is almost the same 
size as the sequential code 

•  Shared variable declarations include the keyword shared 
•  Making a private copy of matrix B in each thread might result in 

better performance since many remote memory operations can 
be avoided 

•  Can be done with the help of upc_memget 
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UPC Pointers  
Local Shared 

Private PP (p1) PS (p3) 

Shared SP (p2) SS (p4) 

Where does the pointer point? 

Where does 
the pointer 
reside? 

int *p1;        /* private pointer to local memory */ 
shared int *p2; /* private pointer to shared space */ 
int *shared p3; /* shared pointer to local memory */ 
shared int *shared p4; /* shared pointer to  
                           shared space */ 
Shared to private is not recommended. 



63 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu 

(FT) IPDPS ‘06 Talk 
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Optimizing Bandwidth Limited 
Problems Using One-Sided 

Communication and Overlap 

Christian Bell1,2, Dan Bonachea1, 
Rajesh Nishtala1, and Katherine Yelick1,2 

1UC Berkeley, Computer Science Division 
2Lawrence Berkeley National Laboratory 
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Conventional Wisdom 
•  Send few, large messages 

–  Allows the network to deliver the most effective bandwidth 
•  Isolate computation and communication phases  

–  Uses bulk-synchronous programming  
–  Allows for packing to maximize message size 

•  Message passing is preferred paradigm for clusters 
•  Global Address Space (GAS) Languages are 

primarily useful for latency sensitive applications  
•  GAS Languages mainly help productivity 

–  However, not well known for their performance advantages 
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Our Contributions 
•  Increasingly, cost of HPC machines is in the network 

•  One-sided communication model is a better match to 
modern networks 
–  GAS Languages simplify programming for this model 

•   How to use these communication advantages  
–  Case study with NAS Fourier Transform (FT) 
–  Algorithms designed to relieve communication bottlenecks  

•  Overlap communication and computation 
•  Send messages early and often to maximize overlap 
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UPC Programming Model 
•  Global address space: any thread/process may directly read/write data 

allocated by another 
•  Partitioned: data is designated as local (near) or global (possibly far); 

programmer controls layout  

g:  g:  g:  

Proc 0" Proc 1" Proc n-1"

•  3 of the current languages: UPC, CAF, and Titanium  
–  Emphasis in this talk on UPC (based on C) 
–  However programming paradigms presented in this work are 

not limited to UPC 

l:  l:  l:  

Global arrays: 
Allows any 
processor to directly 
access data on any 
other processor 

shared 

private 
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Advantages of GAS Languages 

•  Productivity 
–  GAS supports construction of complex shared data structures 
–  High level constructs simplify parallel programming 
–  Related work has already focused on these advantages 

•  Performance (the main focus of this talk) 
–  GAS Languages can be faster than two-sided MPI 
–  One-sided communication paradigm for GAS languages more 

natural fit to modern cluster networks  
–  Enables novel algorithms to leverage the power of these networks 
–  GASNet, the communication system in the Berkeley UPC Project, 

is designed to take advantage of this communication paradigm 
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One-Sided vs Two-Sided 

•  A one-sided put/get can be entirely handled by network interface with RDMA 
support 

–  CPU can dedicate more time to computation rather than handling communication  

•  A two-sided message can employ RDMA for only part of the communication   
–  Each message requires the target to provide the destination address 
–  Offloaded to network interface in networks like Quadrics 

•  RDMA makes it apparent that MPI has added costs associated with ordering to 
make it usable as a end-user programming model 

dest. addr. 

message id 

data payload 

data payload 

one-sided put (e.g., GASNet) 

two-sided message (e.g., MPI) 

network 
 interface 

memory 

host 
CPU 
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Latency Advantages 
•  Comparison: 

–  One-sided: 
•  Initiator can always transmit 

remote address  
•  Close semantic match to high 

bandwidth, zero-copy RDMA  
–  Two-sided: 

•   Receiver must provide 
destination address 

•  Latency measurement correlates 
to software overhead 
–  Much of the small-message 

latency is due to time spent in 
software/firmware processing 

do
w

n 
is

 g
oo

d 

One-sided implementation consistently 
outperforms 2-sided counterpart 
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Bandwidth Advantages 
•  One-sided semantics better match to 

RDMA supported networks 
–  Relaxing point-to-point ordering 

constraint can allow for higher 
performance on some networks  

–  GASNet saturates to hardware peak 
at lower message sizes 

–  Synchronization decoupled from data 
transfer 

•  MPI semantics designed for end user 
–  Comparison against good MPI 

implementation 
–  Semantic requirements hinder MPI 

performance 
–  Synchronization and data transferred 

coupled together in message passing 

Over a factor of 2 improvement  
for 1kB messages 

up is good 
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Bandwidth Advantages (cont) 

•  GASNet and MPI saturate 
to roughly the same 
bandwidth for “large” 
messages 

•  GASNet consistently 
outperforms MPI for “mid-
range” message sizes 

up is good 
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A Case Study: NAS FT 
•  How to use the potential that the microbenchmarks reveal? 

•  Perform a large 3 dimensional Fourier Transform 
–  Used in many areas of computational sciences  

•  Molecular dynamics, computational fluid dynamics, image processing, 
signal processing, nanoscience, astrophysics, etc.  

•  Representative of a class of communication intensive 
algorithms 
–  Sorting algorithms rely on a similar intensive communication pattern 
–  Requires every processor to communicate with every other processor 
–  Limited by bandwidth 
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Performing a 3D FFT (part 2) 
•  Perform an FFT in all three dimensions 
•  With 1D layout, 2 out of the 3 dimensions are local while the last Z 

dimension is distributed 

Step 1: FFTs on the columns 
 (all elements local) 

Step 2: FFTs on the rows 
  (all elements local) 

Step 3: FFTs in the Z-dimension 
 (requires communication) 
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Performing the 3D FFT (part 3) 
•  Can perform Steps 1 and 2 since all the data is 

available without communication 
•  Perform a Global Transpose of the cube 

–  Allows step 3 to continue 

Transpose 
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The Transpose 
•  Each processor has to scatter input domain to other 

processors 
–  Every processor divides its portion of the domain into P pieces  
–  Send each of the P pieces to a different processor 

•  Three different ways to break it up the messages 
1.  Packed Slabs (i.e. single packed “Alltoall” in MPI parlance) 
2.  Slabs 
3.  Pencils 

•  An order of magnitude increase in the number of messages  
•  An order of magnitude decrease in the size of each message 
•  “Slabs” and “Pencils” allow overlapping communication and 

computation and leverage RDMA support in modern networks  
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Algorithm 1: Packed Slabs 

Example with P=4, NX=NY=NZ=16 

1.  Perform all row and column FFTs 
2.  Perform local transpose  

–  data destined to a remote processor 
are grouped together 

3.  Perform P puts of the data 

Local transpose 

put to proc 0 

put to proc 1 

put to proc 2 

put to proc 3 

•    For 5123 grid across 64 processors 
–    Send 64 messages of 512kB each 
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Bandwidth Utilization 
•  NAS FT (Class D) with 256 processors on Opteron/

InfiniBand 
–  Each processor sends 256 messages of 512kBytes 
–  Global Transpose (i.e. all to all exchange) only achieves 

67% of peak point-to-point bidirectional bandwidth  
–  Many factors could cause this slowdown 

•  Network contention  
•  Number of processors that each processor communicates with 

•  Can we do better? 
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Algorithm 2: Slabs 
•  Waiting to send all data in one phase 

bunches up communication events 
•  Algorithm Sketch 

–  for each of the NZ/P planes 
•  Perform all column FFTs 
•  for each of the P “slabs”  
   (a slab is NX/P rows) 

–  Perform FFTs on the rows in the slab 
–  Initiate 1-sided put of the slab  

–  Wait for all puts to finish  
–  Barrier 

•  Non-blocking RDMA puts allow data 
movement to be overlapped with 
computation.  

•  Puts are spaced apart by the amount 
of time to perform FFTs on NX/P rows 

Start computation  
for next plane 

plane 0 

put to proc 0 

put to proc 1 

put to proc 2 

put to proc 3 

•  For 5123 grid across 64 
processors 
–  Send 512 messages of 

64kB each 
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Algorithm 3: Pencils 
•  Further reduce the granularity of 

communication 
–  Send a row (pencil) as soon as it is ready 

•  Algorithm Sketch 
–  For each of the NZ/P planes 

•  Perform all 16 column FFTs 
•  For r=0; r<NX/P; r++  

–  For each slab s in the plane 
»  Perform FFT on row r of slab s 
»  Initiate 1-sided put of row r  

–  Wait for all puts to finish 
–  Barrier 

•  Large increase in message count 
•  Communication events finely diffused 

through computation 
–  Maximum amount of overlap 
–  Communication starts early  

plane 0 
0 
0 
0 
0 
1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
3 

Start computation  
for next plane 

•  For 5123 grid across 64 
processors 
–  Send 4096 messages 

of 8kB each 
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Communication Requirements 
•  5123 across 64 processors 

–  Alg 1: Packed Slabs 
•  Send 64 messages of 512kB 

–  Alg 2: Slabs 
•  Send 512 messages of 64kB 

–  Alg 3: Pencils 
•  Send 4096 messages of 8kB 

With Slabs GASNet is slightly faster than 
MPI 

GASNet achieves close to peak bandwidth 
with Pencils but MPI is about 50% less 
efficient at 8k With the message sizes in Packed Slabs both 

comm systems reach the same peak bandwidth  
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Platforms 
Name Processor Network  Software 

Opteron/Infiniband 
“Jacquard” @ NERSC 

Dual 2.2 GHz Opteron 
(320 nodes @ 4GB/
node) 

Mellanox Cougar 
InfiniBand 4x HCA 

Linux 2.6.5, Mellanox 
VAPI, MVAPICH 0.9.5, 
Pathscale CC/F77 2.0 

Alpha/Elan3 
“Lemieux” @ PSC 

Quad 1 GHz Alpha 
21264 (750 nodes @ 
4GB/node) 

Quadrics QsNet1 
Elan3 /w dual rail (one 
rail used) 

Tru64 v5.1, Elan3 
libelan 1.4.20, Compaq 
C V6.5-303, HP Fortra 
Compiler 
X5.5A-4085-48E1K 

Itanium2/Elan4 
“Thunder” @ LLNL 

Quad 1.4 Ghz Itanium2 
(1024 nodes @ 8GB/
node) 

Quadrics QsNet2 Elan4 Linux 2.4.21-chaos, 
Elan4 libelan 1.8.14, 
Intel ifort 8.1.025, icc 8. 
1.029 

P4/Myrinet 
“FSN” @  
UC Berkeley Millennium 
Cluster 

Dual 3.0 Ghz Pentium 4 
Xeon (64 nodes @ 3GB/
node) 

Myricom Myrinet 2000 
M3S-PCI64B 

Linux 2.6.13, GM 2.0.19, 
Intel ifort 
8.1-20050207Z, icc 
8.1-20050207Z 
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Comparison of Algorithms 
•  Compare 3 algorithms against 

original NAS FT 
–  All versions including Fortran 

use FFTW for local 1D FFTs 
–  Largest class that fit in the 

memory (usually class D) 
•  All UPC flavors outperform 

original Fortran/MPI 
implantation by at least 20% 

–  One-sided semantics allow 
even exchange based 
implementations to improve 
over MPI implementations 

–  Overlap algorithms spread the 
messages out, easing the 
bottlenecks  

–  ~1.9x speedup in the best 
case 

up is good 
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Time Spent in Communication 
•  Implemented the 3 

algorithms in MPI using 
Irecvs and Isends 

•  Compare time spent 
initiating or waiting for 
communication to finish 
–  UPC consistently spends 

less time in 
communication than its 
MPI counterpart 

–  MPI unable to handle 
pencils algorithm in some 
cases  
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Conclusions 
•  One-sided semantics used in GAS languages, such as UPC, 

provide a more natural fit to modern networks 
–  Benchmarks demonstrate these advantages 

•  Use these advantages to alleviate communication 
bottlenecks in bandwidth limited applications 
–  Paradoxically it helps to send more, smaller messages 

•  Both two-sided and one-sided implementations can see 
advantages of overlap 
–  One-sided implementations consistently outperform two-sided 

counterparts because comm model more natural fit 

•  Send early and often to avoid communication bottlenecks 
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Try It! 

•  Berkeley UPC is open source 
–  Download it from http://upc.lbl.gov 
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Contact Us 

•  Authors 
–  Christian Bell 
–  Dan Bonachea 
–  Rajesh Nishtala 
–  Katherine A. Yelick 
–  Email us: 

•  upc@lbl.gov 

  Special thanks to the fellow 
members of the Berkeley 
UPC Group 

•  Wei Chen 
•  Jason Duell 
•  Paul Hargrove 
•  Parry Husbands 
•  Costin Iancu 
•  Mike Welcome 

•  Associated Paper: IPDPS ‘06 Proceedings 
•  Berkeley UPC Website: http://upc.lbl.gov 
•  GASNet Website: http://gasnet.cs.berkeley.edu 
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P2P Sync (PGAS’06) 
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Efficient Point-to-Point 
Synchronization in UPC  

Dan Bonachea, Rajesh Nishtala,  
Paul Hargrove, Katherine Yelick 

U.C. Berkeley / LBNL 

http://upc.lbl.gov 
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Outline 
•  Motivation for point-to-point sync operations 
•  Review existing mechanisms in UPC  
•  Overview of proposed extension 
•  Microbenchmark performance 
•  App kernel performance 
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Point-to-Point Sync: Motivation 
•  Many algorithms need point-to-point synchronization 

–  Producer/consumer data dependencies (one-to-one, few-to-few) 
•  Sweep3d, Jacobi, MG, CG, tree-based reductions, … 

–  Ability to couple a data transfer with remote notification 
–  Message passing provides this synchronization implicitly 

•  recv operation only completes after send is posted 
•  Pay costs for sync & ordered delivery whether you want it or not 

–  For PGAS, really want something like a signaling store (Split-C) 
•  Current mechanisms available in UPC: 

–  UPC Barriers - stop the world sync 
–  UPC Locks - build a queue protected with critical sections 
–  Strict variables - roll your own sync primitives 

•  We feel these current mechanisms are insufficient 
–  None directly express the semantic of a synchronizing data transfer 

•  hurts productivity 
•  Inhibits high-performance implementations, esp on clusters 

–  This talk will focus on impact for cluster-based UPC implementations 
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•  Works well for apps that are naturally bulk-synchronous 
–  all threads produce data, then all threads consume data 
–  not so good if your algorithm doesn't naturally fit that model 

                             shared [] int data[…]; 
upc_memput(&data,…); 

upc_barrier;                 upc_barrier; 
                             /* consume data */ 

barrier: 
over-synchronizes 
threads 
high-latency due to 
barrier 
no overlap on producer 

Point-to-Point Sync Data Xfer in UPC 
Thread 1                                  Thread 0 
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        shared [] int data[…]; 
        int f = 0; 
        upc_lock_t *L = …; 

upc_lock(&L); 

 upc_memput(&data,…);          
 f = 1;      

upc_unlock(&L);  
               while (1) { 

                              upc_lock(&L); 
                              if (f) break; 
                              upc_unlock(&L); 

        } 
                            /* consume data */ 

Point-to-Point Sync Data Xfer in UPC 

upc_locks: 
latency 2.5+ round-trips 
limited overlap on 
producer 

Thread 1                                  Thread 0 

•  This one performs so poorly on clusters that we won't consider it further… 
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                             strict int f = 0; 
upc_memput(&data,…);           
f = 1;                   
                             while (!f) bupc_poll(); 
                             /* consume data */ 

                    strict int f = 0; 

h = bupc_memput_async(&data,…);       
  /* overlapped work… */ 
bupc_waitsync(h); 
upc_fence; 
h2 = bupc_memput_async(&f,…); 
  /* overlapped work… */ 
bupc_waitsync(h2);                    while (!f) bupc_poll(); 
                                      /* consume data */ 

Point-to-Point Sync Data Xfer in UPC 
memput + strict flag: 
latency ~1.5 round-
trips 
no overlap on 
producer 

non-blocking  
memput + strict flag: 
allows overlap 
latency ~1.5 round-
trips 
higher complexity 

Thread 1                                  Thread 0 

•  There are several subtle ways to get this wrong 
–  not suitable for novice UPC programmers 
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Signaling Put Overview 

                              bupc_sem_t *sem = …; 

bupc_memput_signal(…,sem);    bupc_sem_wait(sem); 
/* overlap compute */         /* consume data */ 

•  Friendly, high-performance interface for a synchronizing, one-
sided data transfer 
–  Want an easy-to-use and obvious interface  

•  Provide coupled data transfer & synchronization 
–  Get overlap capability and low-latency end-to-end 
–  Simplify optimal implementations by expressing the right semantics 
–  Without the downfalls of full-blown message passing 

•  still one-sided in flavor, no unexpected messages, no msg ordering costs 
–  Similar to signaling store operator (:-) in Split-C, with improvements Thread 1                                  Thread 0 

memput_signal: 
latency ~0.5 round-
trips 
allows overlap 
easy to use 
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Point-to-Point Synchronization: 
Signaling Put Interface 

•  Simple extension to upc_memput interface 
   void bupc_memput_signal(shared void *dst, void *src, size_t nbytes,  

         bupc_sem_t *s, size_t n); 

–  Two new args specify a semaphore to signal on arrival 
–  Semaphore must have affinity to the target 
–  Blocks for local completion only (doesn't stall for ack) 
–  Enables implementation using a single network message 

•  Async variant 
void bupc_memput_signal_async(shared void *dst, void *src, size_t nbytes, 

    bupc_sem_t *s, size_t n); 

–  Same except doesn't block for local completion 
–  Analogous to MPI_ISend 
–  More overlap potential, higher throughput for large payloads 
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Point-to-Point Synchronization: 
Semaphore Interface 

•  Consumer-side sync ops - akin to POSIX semaphores 
–  void bupc_sem_wait(bupc_sem_t *s); block for signal "atomic down" 
–  int bupc_sem_try(bupc_sem_t *s); test for signal "test-and-down" 
–  Also variants to wait/try multiple signals at once "down N" 
–  All of these imply a upc_fence 

•  Opaque sem_t objects 
–  Encapsulation in opaque type provides implementation freedom 
–  bupc_sem_t *bupc_sem_alloc(int flags);  
–  void bupc_sem_free(bupc_sem_t *s); 
–  flags specify a few different usage flavors 

•  eg one or many producer/consumer threads, integral or boolean signaling 
•  Bare signal operation with no coupled data transfer: 

–  void bupc_sem_post(bupc_sem_t *s); signal sem "atomic up (N)" 
–  post/wait sync that might not exactly fit the model of signaling put 

non-collectively 
creates a sem_t 
object with affinity to 
caller 
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Microbenchmark Performance 
of Signaling Put 
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Signaling Put: Microbenchmarks 

•  memput (roundtrip) + strict put: Latency is ~ 1½ RDMA put roundtrips 
•  bupc_sem_t: Latency is ~ ½ message send roundtrip 

–  same mechanism used by eager MPI_Send - so performance closely matches 
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CITRIS @ UC Berkeley 
1.3 GHz Itanium-2 
Myrinet PCI-XD  
MPICH-GM 1.2.6..14a 
Linux 2.4.20 

RDMA put or 
message send 
latency:   
~13 us round-trip 
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•  memput (roundtrip) + strict put: Latency is ~1½ RDMA put roundtrips 
•  bupc_sem_t: Latency is ~½ RDMA put roundtrip 

–  sem_t and MPI both using a single RDMA put, at least up to 1KB 
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Jacquard @ NERSC 
2.2 GHz Opteron 
Mellanox InfiniBand 4x  
Linux 2.6.5-7.276 
MVAPICH 0.9.5-mlx1.0.3 

Signaling Put: Microbenchmarks 
RDMA put 
latency:   
~10.5us round-
trip 
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Using Signaling Put to  
Implement Tree-based  

Collective Communication 
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Performance Comparison: UPC Broadcast 

UPC-level 
implementation of 
collectives!
Tree-based 
broadcast - show 
best performance 
across tree geom.!

memput_signal 
competitive with 
MPI broadcast 
(shown for 
comparison)!
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Performance Comparison: All-Reduce-All 

 Dissemination-based 
implementations of  
all-reduce-all collective 

 memput_signal 
consistently outperforms 
memput+strict flag,  
competitive w/ MPI 

 Over a 65% improvement 
in latency at small sizes  
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Using Signaling Put  
in Application Kernels"
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Performance Comparison: SPMV 
(d
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75% improvement in synchronous communication time  
28% improvement in total runtime (relative to barrier)"
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•  Incorporates both 
SPMV and All Reduce 
into an app kernel 

•  memput_signal speeds 
up both SPMV and All 
Reduce portions of the 
application 

•  Leads to an 15% 
improvement in overall 
running time 
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Performance Comparison: Conjugate Gradient 
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Conclusions 
•  Proposed a signaling put extension to UPC!

•  Friendly interface for synchronizing, one-sided data transfers"
•  Allows coupling data transfer & synchronization when needed"
•  Concise and expressive"

•  Enable high-perf. implementation by encapsulating the right semantics"
•  Allows overlap and low-latency, single message on the wire"

•  Provides the strengths of message-passing in a UPC library"
•  Remains true to the one-sided nature of UPC communication"
•  Avoids the downfalls of full-blown message passing"

•  Implementation status!
•  Functional version available in Berkeley UPC 2.2.2"
•  More tuned version available in 2.3.16 and upcoming 2.4 release"

•  Future work!
•  Need more application experience"
•  Incorporate extension in future revision of UPC standard library"


