
1 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Introduction to UPC
Presenter: Paul H. Hargrove (LBNL)

Joint work with Berkeley UPC and Titanium Groups at
Lawrence Berkeley Nat’l Lab & UC Berkeley

Some slides adapted from
Katherine Yelick and Tarek El-Ghazawi

2 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Context
•  Most parallel programs are written using either:

–  Message passing with a SPMD model
•  Usually for scientific applications with C++/Fortran
•  Scales easily

–  Shared memory with threads in OpenMP, Threads+C/C++/F or Java
•  Usually for non-scientific applications
•  Easier to program, but less scalable performance

•  Global Address Space (GAS) Languages take the best of both
–  global address space like threads (programmability)
–  SPMD parallelism like MPI (performance)
–  local/global distinction, i.e., layout matters (performance)

3 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Partitioned Global Address Space
Languages

•  Explicitly-parallel programming model with SPMD parallelism
–  Static - Fixed at program start-up, typically 1 thread per core

•  Global address space model of memory
–  Allows programmer to directly represent distributed data structures

•  Address space is logically partitioned
–  Local vs. remote memory (two-level hierarchy)

•  Programmer control over performance critical decisions
–  Data layout and communication

•  Performance transparency and tunability are goals
–  Initial implementation can use fine-grained shared memory

•  Multiple PGAS languages: UPC (C), CAF (Fortran), Titanium (Java)
–  Newer generation: Chapel, X10 and Fortress

4 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Global Address Space Eases
Programming

•  The languages share the global address space abstraction
–  Shared memory is logically partitioned by thread
–  Remote memory may stay remote: no automatic caching implied
–  One-sided communication: reads/writes of shared variables
–  Both individual and bulk memory copies

•  Languages differ on details
–  Some models have a separate private memory area
–  Distributed array generality and how they are constructed

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

X[0]

Private
ptr: ptr: ptr:

X[1] X[P]

Thread0 Thread1 Threadn

5 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

State of PGAS Languages
•  A successful language/library must run everywhere
•  UPC

–  Commercial compilers available on Cray, SGI, HP machines
–  Open source compiler from LBNL/UCB (source-to-source)
–  Open source gcc-based compiler from Intrepid

•  CAF
–  Commercial compiler available on Cray machines
–  Open source compiler available from Rice

•  Titanium
–  Open source compiler from UCB runs on most machines

•  Common tools
–  Open64 open source research compiler infrastructure
–  ARMCI, GASNet for distributed memory implementations
–  Pthreads, POSIX shared memory

6 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

UPC Overview and Design
•  Unified Parallel C (UPC) is:

–  An explicit parallel extension of ANSI C
–  A partitioned global address space language
–  Sometimes called a GAS language

•  Similar to the C language philosophy
–  Programmers are clever and careful, and may need to get close to

hardware
•  to get performance, but
•  can get in trouble

–  Concise and efficient syntax
•  Common and familiar syntax and semantics for parallel C with simple

extensions to ANSI C
•  Based on ideas in Split-C, AC, and PCP

7 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

One-Sided vs. Two-Sided Messaging

•  Two-sided messaging
–  Message does not contain information about final destination
–  Have to perform look up at the target or do a rendezvous
–  Point-to-point synchronization is implied with all transfers

•  One-sided messaging
–  Message contains information about final destination
–  Decouple synchronization from data movement

•  What does the network hardware support?
•  What about when we need point-to-point sync?

–  Hold that thought…

dest. addr.

message id

data payload

data payload

one-sided put (e.g., UPC)

two-sided message (e.g., MPI)

network
 interface

memory

host
CPU

8 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

GASNet Latency Performance
•  GASNet implemented on top of Deep

Computing Messaging Framework
(DCMF)
–  Lower level than MPI
–  Provides Puts, Gets, AMSend, and

Collectives
•  Point-to-point ping-ack latency

performance
–  N-byte transfer w/ 0 byte

acknowledgement
•  GASNet takes advantage of

DCMF remote completion
notification

–  Minimum semantics needed to
implement the UPC memory model

–  Almost a factor of two difference until
32 bytes

–  Indication of better semantic match to
underlying communication system

9 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

GASNet Multilink Bandwidth
•  Each node has six 850MB/s*

bidirectional link
•  Vary number of links from 1 to 6
•  Initiate a series of nonblocking

puts on the links (round-robin)
–  Communication/

communication overlap
•  Both MPI and GASNet asymptote

to the same bandwidth
•  GASNet outperforms MPI at

midrange message sizes
–  Lower software overhead

implies more efficient
message injection

–  GASNet avoids rendezvous to
leverage RDMA

* Kumar et. al showed the
maximum achievable bandwidth
for DCMF transfers is 748 MB/s
per link so we use this as our peak
bandwidth
See “The deep computing
messaging framework: generalized
scalable message passing on the
blue gene/P supercomputer”,
Kumar et al. ICS08

10 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

UPC (PGAS) Execution Model

11 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

UPC Execution Model
•  A number of threads working independently in a SPMD fashion

–  Number of threads specified at compile-time or run-time; available
as program variable THREADS

–  MYTHREAD specifies thread index (0..THREADS-1)
–  upc_barrier is a global synchronization: all wait
–  There is a form of parallel loop that we will see later

•  There are two compilation modes
–  Static Threads mode:

•  THREADS is specified at compile time by the user
•  The program may use THREADS as a compile-time constant

–  Dynamic threads mode:
•  Compiled code may be run with varying numbers of threads

12 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Hello World in UPC
•  Any legal C program is also a legal UPC program (well, almost)
•  If you compile and run it as UPC with P threads, it will run P

copies of the program.
•  Using this fact, plus the identifiers from the previous slides, we can

write a parallel hello world:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main() {
 printf("Thread %d of %d: hello UPC world\n",
 MYTHREAD, THREADS);
}

13 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Example: Monte Carlo Pi Calculation
•  Estimate Pi by throwing darts at a unit square
•  Calculate percentage that fall in the unit circle

–  Area of square = r2 = 1
–  Area of circle quadrant = ¼ * π r2 = π/4

•  Randomly throw darts at x,y positions
•  If x2 + y2 < 1, then point is inside circle
•  Compute ratio:

–  # points inside / # points total
–  π = 4*ratio

r =1

14 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Each thread calls “hit” separately

Initialize random in C
library

Each thread can use input
arguments

Each thread gets its own copy
of these variables

Pi in UPC
•  Independent estimates of pi:
 main(int argc, char **argv) {
 int i, trials, hits= 0;
 double pi;

 if (argc != 2)trials = 1000000;
 else trials = atoi(argv[1]);

 srand(MYTHREAD*17);

 for (i=0; i < trials; i++) hits += hit();
 pi = 4.0*hits/trials;
 printf("PI estimated to %f.", pi);
 }

15 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Helper Code for Pi in UPC
•  Required includes:
 #include <stdio.h>
 #include <stdlib.h>
 #include <upc.h>

•  Function to throw dart and calculate where it hits:
 int hit(){
 double x = ((double) rand()) / RAND_MAX;
 double y = ((double) rand()) / RAND_MAX;
 if ((x*x + y*y) <= 1.0) {
 return(1);
 } else {
 return(0);
 }
 }

16 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Shared vs. Private Variables

17 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Private vs. Shared Variables in UPC
•  Normal C variables and objects are allocated in the private memory

space for each thread.
•  Shared non-array variables are allocated only once, with thread 0
 shared int ours; // use sparingly: performance
 int mine;
•  Shared variables may not have dynamic lifetime: may not occur in a

in a function definition, except as static.

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
mine: mine: mine:

Thread0 Thread1 Threadn

ours:

18 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Pi in UPC: Shared Memory Style
shared variable to record hits

divide work up evenly

accumulate hits

What is the problem with this program?

•  Parallel computing of pi, but with a bug
 shared int hits = 0;
 main(int argc, char **argv) {
 int i, my_trials = 0;
 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)
 hits += hit();
 upc_barrier;
 if (MYTHREAD == 0) {
 printf("PI estimated to %f.", 4.0*hits/trials);
 }}

19 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

UPC Synchronization

20 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

UPC Global Synchronization
•  UPC has two basic forms of barriers:

–  Barrier: block until all other threads arrive
 upc_barrier

–  Split-phase barriers
 upc_notify; this thread is ready for barrier
 do computation unrelated to barrier
 upc_wait; wait for others to be ready

•  Optional labels allow for debugging
#define MERGE_BARRIER 12
if (MYTHREAD%2 == 0) {
 ...
 upc_barrier MERGE_BARRIER;
} else {
 ...
 upc_barrier MERGE_BARRIER;
}

21 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Synchronization - Locks
•  Locks in UPC are represented by an opaque type:

upc_lock_t
•  Locks must be allocated before use:

upc_lock_t *upc_all_lock_alloc(void);
 collective call - allocates 1 lock, same pointer to all threads
upc_lock_t *upc_global_lock_alloc(void);
 non-collective - allocates 1 lock per caller

•  To use a lock:
void upc_lock(upc_lock_t *l)
void upc_unlock(upc_lock_t *l)
 use at start and end of critical region

•  Locks can be freed when not in use
void upc_lock_free(upc_lock_t *ptr);

22 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Pi in UPC: Shared Memory Style

create a lock

accumulate hits
locally

accumulate across
threads

•  Parallel computing of pi, without the bug
 shared int hits = 0;
 main(int argc, char **argv) {
 int i, my_trials, my_hits = 0;
 upc_lock_t *hit_lock = upc_all_lock_alloc();

 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)
 my_hits += hit();
 upc_lock(hit_lock);
 hits += my_hits;
 upc_unlock(hit_lock);
 upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*hits/trials); }

23 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Pi in UPC: Shared Array Version

all_hits is shared
by all processors,
just as hits was

update element with
local affinity

•  Alternative fix to the race condition
•  Have each thread update a separate counter:

–  But do it in a shared array
–  Have one thread compute sum

shared int all_hits [THREADS];
main(int argc, char **argv) {
 … declarations an initialization code omitted
 for (i=0; i < my_trials; i++)
 all_hits[MYTHREAD] += hit();
 upc_barrier;
 if (MYTHREAD == 0) {
 for (i=0; i < THREADS; i++) hits += all_hits[i];
 printf("PI estimated to %f.", 4.0*hits/trials);
 }}

24 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Collectives
•  UPC has support for many standard collectives (in latest language spec)

–  Data Movement: Broadcast, Scatter, Gather, Allgather, Exchange (i.e.
Alltoall)

–  Computational: Reductions and Prefix Reductions
•  Shared data semantics complicates when data is considered safe to read

or modify
•  Language lets user specify looser synchronization requirements (i.e.

when is source data readable by the collective or modifiable)
–  Looser synchronization allows better implementation in runtime
–  Loose (NO): Data will not be touched within the current barrier phase
–  Medium (MY): Thread will not access remote data associated to

collective without point-to-point synchronization or a barrier
–  Strict (All): Can access any and all data associated with a collective

without synchronization (i.e. handled w/in the collective)
–  Defaults are to use “strict” – safety over speed

25 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Pi in UPC: Data Parallel Style

summation over
THREADS blocks
of 1 integer each

barrier replaced by collective sync flags

•  The previous versions of Pi works, but is not scalable:
–  On a large # of threads, the summation will be a bottleneck

•  Use a reduction for better scalability

 shared int all_hits [THREADS], hits;
 main(int argc, char **argv) {
 … declarations an initialization code omitted
 for (i=0; i < my_trials; i++)
 all_hits[MYTHREAD] += hit();
 upc_all_reduceI(&hits, all_hits, UPC_ADD,
 THREADS, 1, NULL,
 UPC_IN_MYSYNC|UPC_OUT_MYSYNC);
 // upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*hits/trials);}

26 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Recap: Private vs. Shared Variables
in UPC

•  We saw several kinds of variables in the pi examples
–  Private scalars (my_hits)
–  Shared scalars (hits)
–  Shared arrays (all_hits)

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
my_hits: my_hits: my_hits:

Thread0 Thread1 Threadn

all_hits[0]:

hits:

all_hits[n]: all_hits[1]:

hit_lock:

where:
n=THREADS-1

27 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Work Distribution Using
upc_forall

28 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Example: Vector Addition

 /* vadd.c */
 #include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], sum[N];
void main() {

 int i;
 for(i=0; i<N; i++)

 if (MYTHREAD == i%THREADS)
 sum[i]=v1[i]+v2[i];
}

• Questions about parallel vector additions: "
• How to layout data (here it is cyclic, more info later)"
• Which processor does what (here it is “owner computes”)"

cyclic layout

owner computes

29 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

•  The idiom in the previous slide is very common
–  Loop over all; work on those owned by this thread

•  UPC adds a special type of loop
 upc_forall(init; test; loop; affinity)
 statement;

•  Programmer is asserting that the iterations are independent
–  Undefined if there are dependencies across threads

•  Affinity expression indicates which iterations will run on each thread.
It may have one of two types:
–  Integer: (affinity%THREADS) == MYTHREAD
–  Pointer: upc_threadof(affinity) == MYTHREAD

•  Syntactic sugar for loop on previous slide
–  Some compilers may do better than this, e.g.,

 for(i=MYTHREAD; i<N; i+=THREADS) stmt;
–  Rather than having all threads iterate N times:

 for(i=0; i<N; i++) if (MYTHREAD == i%THREADS) stmt;

Work Distribution with upc_forall

30 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

• The vadd example can be rewritten as follows

• Affinity of “&sum[i]” or “sum+i” are equivalent to “i”
• The code would still be correct (but potentially slow) if the
affinity expression were “i+1” rather than “i”.

Vector Addition with upc_forall

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];

void main() {
 int i;
 upc_forall(i=0; i<N; i++; i)

 sum[i]=v1[i]+v2[i];
}

The cyclic data
distribution may
perform poorly on
some machines"

31 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Distributed Arrays in UPC

32 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Shared Arrays Are Cyclic By Default
•  Shared scalars (when allocated statically) always live in thread 0
•  Shared arrays are spread over the threads
•  Shared array elements are spread across the threads

shared int x[THREADS] /* 1 element per thread */
shared int y[3][THREADS] /* 3 elements per thread */
shared int z[3][3] /* 2 or 3 elements per thread here*/

•  In the pictures below, assume THREADS = 4
–  Red elts have affinity to thread 0

x

y

z

As a 2D array, y is
logically blocked by
columns

Think of linearized C
array, then map it
round-robin

z is not, since THREADS!=3

33 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Layouts in General
•  All static non-array objects have affinity with thread zero.
•  Array layouts are controlled by layout specifiers:

–  Empty or [1] (cyclic layout)
–  [*] (blocked layout)
–  [0] or [] (indefinite layout, all on 1 thread)
–  [b] (fixed block size, aka block-cyclic)

•  The affinity of an array element is determined by:
–  block size, a compile-time constant
–  and THREADS.

•  Element i has affinity with thread
 (i / block_size) % THREADS

•  In 2D and higher, linearize the elements as in a C representation, and
then use above mapping

34 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

More on Shared Arrays
•  Shared arrays are just data allocated on different processors

–  Can be cast into any block size
–  Casting just renumbers indices of shared array (data doesn’t move!)
–  Example with 4 threads

•  Allocate an array:
•  shared int *A = upc_all_alloc(THREADS, sizeof(int)*4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

p=(shared [4] int*) A

0 1 8 9

2 3 10 11

4 5 12 13

6 7 14 15

q=(shared [2] int*) A

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

r=(shared [1] int*) A

T0

T1

T2

T3

35 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

UPC Matrix Vector Multiplication
Code

#define N 1024
shared [N*N/THREADS] int A[N][N]; /*blocked row-wise*/
shared [N/THREADS] int b[N], c[N]; /*blocked row-wise*/

void main (void) {
 int i, j , l;
 upc_forall(i = 0 ; i < N ; i++; &A[i][0]) {
 /*affinity means I own row i of A*/
 c[i] = 0;
 for (l= 0 ; l< THREADS ; l++)
 c[i] += a[i][l]*b[l];

 /*no communication since all data accessed is local*/
 }}

• Matrix-vector multiplication with matrix stored by rows"
• Contrived example: matrix is square & multiple of THREADS"

36 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

UPC Matrix Multiplication Code
#include <upc_relaxed.h>
#define N 1024
#define P 1024
#define M 1024

/* a and c are row-wise blocked shared matrices*/
shared [N*P/THREADS] int a[N][P];
shared [M*N/THREADS] int c[N][M];
shared [M/THREADS] int b[P][M]; /*column-wise blocking*/

void main (void) {
 int i, j , l; /* private variables*/
 upc_forall(i = 0 ; i<N ; i++; &c[i][0]) {
 for (j=0 ; j<M ;j++) {
 c[i][j] = 0;
 /*access remote data for matrix multiply: */
 for (l=0 ; l<P ; l++) c[i][j] += a[i][l]*b[l][j];
 }

 }
}

37 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Domain Decomposition for UPC

•  A (N × P) is decomposed row-wise
into blocks of size (N × P) /
THREADS as shown below:

•  B(P × M) is decomposed column wise
into M/ THREADS blocks as shown
below:

Thread 0
Thread 1

Thread THREADS-1

 0 .. (N*P / THREADS) -1
 (N*P / THREADS)..(2*N*P / THREADS)-1

 ((THREADS-1)×N*P) / THREADS ..
(THREADS*N*P / THREADS)-1

Columns 0: (M/
THREADS)-1 Columns ((THREAD-1) × M)/

THREADS:(M-1)

Thread 0 Thread THREADS-1

• Note: N and M are assumed to be multiples of
THREADS

•  Exploits locality in matrix multiplication

N

P M

P

38 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Pointers to Shared vs. Arrays

#define N 100*THREADS
shared int v1[N], v2[N], sum[N]; /*cyclic layout*/
void main() {

int i;
shared int *p1, *p2;

p1=v1; p2=v2;
for (i=0; i<N; i++, p1++, p2++)

 if (i %THREADS == MYTHREAD)
 sum[i]= *p1 + *p2;

}

•  In the C tradition, array can be access through pointers"
• Here is the naïve vector addition example using pointers"

v1

p1

39 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

UPC Pointers

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to
 shared space */

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
p1:

Thread0 Thread1 Threadn

p2:

p1:

p2:

p1:

p2:

p3:

p4:

p3:

p4:

p3:

p4:

Pointers to shared often require more storage and are more costly to dereference;
they may refer to local or remote memory.

40 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Common Uses for UPC Pointer Types
int *p1;
•  These pointers are fast (just like C pointers)
•  Use to access local data in part of code performing local

work
•  Often cast a pointer-to-shared to one of these to get faster

access to shared data that is local
shared int *p2;
•  Use to refer to remote data
•  Larger and slower due to test-for-local + possible

communication
int *shared p3;
•  Legal, but rarely useful. Not recommended
shared int *shared p4;
•  Use to build shared linked structures, e.g., a linked list

41 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Bulk Data Movement and Nonblocking
Communication

•  Loops to perform element-wise data movement could potentially be slow
because of network traffic per element

•  Language introduces variants of memcpy to address this issue:
•  upc_memcpy (source and destination are in shared space)
•  upc_memput (source is in private / destination is in shared)
•  upc_memget (source is in shared / destination is in private)

•  Berkeley UPC extensions also provide nonblocking variants
–  Allows comm/comp or comm/comm overlap
–  Unlike MPI_Isend and MPI_Irecv, they are completely one sided and

are a better semantic fit for Remote Direct Memory Access (RDMA)
–  Expected to be part of future UPC language standard

42 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Extensions and Tricks of the
Trade

43 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Pointer Directory
•  Want each processor to dynamically allocate an array of k doubles of

data on every processor that is remotely addressable.
•  We want the k doubles to be contiguous so that they can be cast into

local pointers and passed into C-library functions without extra copies
–  If k is a compile constant: shared [k] double A[THREADS*k] else

 shared [] double **my_dir; /*local array of UPC pointers*/
 shared double *global_array; /*cyclic by default*/
 my_dir = (shared [] double**)
 malloc(sizeof(shared[] double*)*THREADS)
 global_array = upc_all_alloc(THREADS, k*sizeof(double));
 for (i=0; i<THREADS; i++) { /*cyclic dist. implies elem i is

on proc i so cast gets all memory w/ affinity to that proc*/
 my_dir[i] = (shared [] double*) &global_array[i];}

To access element i on proc p (i can range from 0 to k-1)
 my_dir [p][i] or *(my_dir [p]+i)

44 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Berkeley UPC Extensions
•  Nonblocking communication

–  Ability to have comm/comp or comm/comm overlap
–  Like MPI_Isend and Irecv, uses explicit handles that need to be

synched.
•  Semaphores and Point-to-Point synchronization

–  Many applications need point-to-point synchronization
–  Provide mechanisms to allow it in UPC without making it default
–  Interface provides a one-sided signaling put which notifies remote

processor when data has arrived
•  Value-based collectives

–  Simplify collective interface when you need collectives on scalar
values: hits = bupc_allv_reduce(int, my_hits, 0, UPC_ADD);

•  Remote atomics
–  Perform atomic operations on 32 or 64 bit ints in shared space

45 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Point-to-Point Sync
•  Many algorithms need point-to-point synchronization

–  Producer/consumer data dependencies (one-to-one, few-to-few)
•  Sweep3d, Jacobi, MG, CG, tree-based reductions, …

–  Ability to couple a data transfer with remote notification
–  Message passing provides this synchronization implicitly

•  recv operation only completes after send is posted
•  Pay costs for sync & ordered delivery whether you want it or not

–  For PGAS, really want something like a signaling store (Split-C)
•  Current mechanisms available in UPC:

–  UPC Barriers - stop the world sync
–  UPC Locks - build a queue protected with critical sections
–  Strict variables - roll your own sync using the memory model

•  Our Proposed Extension
–  Use semaphores in shared space and provide “signalling put”
–  User specifies remote semaphore to signal on completion of put
–  Point-to-point synchronization is provided only when needed

46 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Point-to-Point Synchronization (cont):
•  Simple extension to upc_memput interface
 void bupc_memput_signal(shared void *dst, void *src, size_t nbytes,

 bupc_sem_t *s, size_t n);

–  Two new args specify a semaphore to signal on arrival
–  Semaphore must have affinity to the target
–  Blocks for local completion only (doesn't stall for ack)
–  Enables implementation using a single network message
–  Also provide a non-blocking variant

•  Target side calls wait on the same semaphore
–  When the semaphore gets tripped the data has arrived and the target

can safely use the buffer
–  Interface: bupc_sem_wait(bupc_sem_t *s)

 bupc_sem_t *sem = …;

bupc_memput_signal(…,sem); bupc_sem_wait(sem);
/* overlap compute */ /* consume data */

Thread 1 Thread 0 memput_signal:
latency ~0.5 round-
trips
allows overlap
easy to use

47 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Application Examples and
Performance

48 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Dense LU Factorization in UPC
•  Direct methods have complicated dependencies

•  Especially with pivoting (unpredictable communication)
•  Especially for sparse matrices (dependence graph with holes)

•  LU Factorization in UPC
•  Use overlap ideas and multithreading to mask latency
•  Multithreaded: UPC threads + user threads + threaded BLAS

•  Panel factorization: Including pivoting
•  Update to a block of U
•  Trailing submatrix updates

•  Written in a Data-centric way
•  Shared address space and one-sided communication allows remote

enqueue of work w/o interrupting the remote processors
•  Dense LU done: HPL-compliant
•  Sparse version underway

•  Ref: “Multi-Threading and One-Sided Communication in Parallel LU
Factorization” by Parry Husbands and Kathy Yelick [SC’07]

49 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

•  Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid
– ScaLAPACK (block size 64) 25.25 GFlop/s (tried several block sizes)
– UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s

•  n = 32000 on a 4x4 process grid
– ScaLAPACK - 43.34 GFlop/s (block size = 64)
– UPC - 70.26 Gflop/s (block size = 200)

UPC HPL Performance
• MPI HPL numbers from
HPCC database

• Large scaling:
• 2.2 TFlops on 512p,
• 4.4 TFlops on 1024p
(Thunder)

Joint work with Parry Husbands"

50 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Other Dense Linear Algebra Performance
on BG/P

458

580
625

0

100

200

300

400

500

600

700

PBLAS (MPI) UPC hand-roll UPC collective

G
Fl

op
s

Parallel Matrix Multiplication
(256 core BlueGene/P)

202 212 220

0

50

100

150

200

250

ScaLapack
(MPI)

UPC hand-roll UPC collective

G
FL

op
s

Parallel Cholesky
Factorization

(256 core BlueGene/P)

51 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Case Study: NAS FT Benchmark

•  Perform a large 3D FFT
–  Molecular dynamics, CFD, image processing, signal processing, astrophysics,

etc.
–  Representative of a class of communication intensive algorithms

•  Requires parallel many-to-many communication
•  Stresses communication subsystem
•  Limited by bandwidth (namely bisection bandwidth) of the network

•  Building on our previous work, we perform a 2D partition of the domain
–  Requires two rounds of communication rather than one
–  Each processor communicates in two rounds with O(√T) threads in each

52 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu 5

2
http://upc.lbl.gov

Strong Scaling

•  Fix problem size at 2k x 1k x 1k and run in VN mode
–  upto 4 racks of BG/P with 4 processes per node

•  Analytic upper bound calculates megaflop rate based on time needed to transfer
domain across the bisection
–  Kink at 2048 cores indicates where 3D Torus is completed

•  MPI Packed Slabs scales better than MPI Slabs
–  Benefit of comm/comp. overlap outweighed by extra messages

•  UPC (i.e. GASNet) Slabs consistently outperforms MPI
–  Lower software overhead enables better overlap
–  Outperforms Slabs by mean of 63% and Packed Slabs by mean of 37%

53 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu 5

3

Weak Scaling

•  Scale problem size with the number of cores
–  computation for FFT scales as O(N log N) so thus flops don’t scale linearly

•  UPC Slabs scales better than strong scaling benchmark
–  Message size gets too small at high concurrency for strong scaling and becomes

hard to utilize overlap
•  MPI Packed Slabs outperforms MPI Slabs (most of the time)

–  Again indicates that overlapping communication/computation is not a fruitful
optimization for MPI

•  UPC achieves 1.93 Teraflops while best MPI achieves 1.37 Teraflops
–  40% improvement in performance at 16k cores.

54 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Latest FFT Performance on BG/P (strong scaling)

0

500

1000

1500

2000

2500

3000

D D D D D D D

512 1024 2048 4096 8192 16384 32768

128 256 512 1024 2048 4096 8192

G
Fl

op
s

Slabs
Slabs (Collective)
Packed Slabs (Collective)
MPI Packed Slabs

55 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Latest FFT Performance on BG/P (weak scaling)

0

500

1000

1500

2000

2500

3000

3500

D/8 D/4 D/2 D D*2 D*4 D*8 D*16

256 512 1024 2048 4096 8192 16384 32768

64 128 256 512 1024 2048 4096 8192

G
Fl

op
s

Slabs
Slabs (Collective)
Packed Slabs (Collective)
MPI Packed Slabs

HPC Challenge Peak as of July 09 is ~4.5 TFlops
on 128k Cores

56 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Thanks!
Any Questions?

57 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Backup Slides

58 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Blocked Layouts in UPC
•  The cyclic layout is typically stored in one of two ways

•  Distributed memory: each processor has a chunk of memory
•  Thread 0 would have: 0,THREADS, THREADS*2,… in a chunk

•  Shared memory machine: each thread has a logical chunk
•  Shared memory would have: 0,1,2,…THREADS,THREADS+1,…

•  What performance problem is there with the latter?
•  What if this code was instead doing nearest neighbor averaging (1D stencil)?

•  Vector addition example can be rewritten as follows

blocked layout
#define N 100*THREADS

shared [*] int v1[N], v2[N], sum[N];

void main() {
 int i;
 upc_forall(i=0; i<N; i++; &sum[i])

 sum[i]=v1[i]+v2[i];
}

59 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

UPC Collectives in General
•  The UPC collectives interface is available from:

–  http://www.gwu.edu/~upc/documentation.html
•  It contains typical functions:

–  Data movement: broadcast, scatter, gather, …
–  Computational: reduce, prefix, …

•  Interface has synchronization modes:
–  Avoid over-synchronizing (barrier before/after is simplest

semantics, but may be unnecessary)
–  Data being collected may be read/written by any thread

simultaneously

60 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

2D Array Layouts in UPC
•  Array a1 has a row layout and array a2 has a block row layout.
 shared [m] int a1 [n][m];
 shared [k*m] int a2 [n][m];

•  If (k + m) % THREADS = = 0 them a3 has a row layout
 shared int a3 [n][m+k];
•  To get more general HPF and ScaLAPACK style 2D blocked

layouts, one needs to add dimensions.
•  Assume r*c = THREADS;
 shared [b1][b2] int a5 [m][n][r][c][b1][b2];
•  or equivalently
 shared [b1*b2] int a5 [m][n][r][c][b1][b2];

61 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Notes on the Matrix Multiplication
Example

•  The UPC code for the matrix multiplication is almost the same
size as the sequential code

•  Shared variable declarations include the keyword shared
•  Making a private copy of matrix B in each thread might result in

better performance since many remote memory operations can
be avoided

•  Can be done with the help of upc_memget

62 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

UPC Pointers
Local Shared

Private PP (p1) PS (p3)

Shared SP (p2) SS (p4)

Where does the pointer point?

Where does
the pointer
reside?

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to
 shared space */
Shared to private is not recommended.

63 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

(FT) IPDPS ‘06 Talk

64 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Optimizing Bandwidth Limited
Problems Using One-Sided

Communication and Overlap

Christian Bell1,2, Dan Bonachea1,
Rajesh Nishtala1, and Katherine Yelick1,2

1UC Berkeley, Computer Science Division
2Lawrence Berkeley National Laboratory

65 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Conventional Wisdom
•  Send few, large messages

–  Allows the network to deliver the most effective bandwidth
•  Isolate computation and communication phases

–  Uses bulk-synchronous programming
–  Allows for packing to maximize message size

•  Message passing is preferred paradigm for clusters
•  Global Address Space (GAS) Languages are

primarily useful for latency sensitive applications
•  GAS Languages mainly help productivity

–  However, not well known for their performance advantages

66 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Our Contributions
•  Increasingly, cost of HPC machines is in the network

•  One-sided communication model is a better match to
modern networks
–  GAS Languages simplify programming for this model

•  How to use these communication advantages
–  Case study with NAS Fourier Transform (FT)
–  Algorithms designed to relieve communication bottlenecks

•  Overlap communication and computation
•  Send messages early and often to maximize overlap

67 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

UPC Programming Model
•  Global address space: any thread/process may directly read/write data

allocated by another
•  Partitioned: data is designated as local (near) or global (possibly far);

programmer controls layout

g: g: g:

Proc 0" Proc 1" Proc n-1"

•  3 of the current languages: UPC, CAF, and Titanium
–  Emphasis in this talk on UPC (based on C)
–  However programming paradigms presented in this work are

not limited to UPC

l: l: l:

Global arrays:
Allows any
processor to directly
access data on any
other processor

shared

private

68 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Advantages of GAS Languages

•  Productivity
–  GAS supports construction of complex shared data structures
–  High level constructs simplify parallel programming
–  Related work has already focused on these advantages

•  Performance (the main focus of this talk)
–  GAS Languages can be faster than two-sided MPI
–  One-sided communication paradigm for GAS languages more

natural fit to modern cluster networks
–  Enables novel algorithms to leverage the power of these networks
–  GASNet, the communication system in the Berkeley UPC Project,

is designed to take advantage of this communication paradigm

69 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

One-Sided vs Two-Sided

•  A one-sided put/get can be entirely handled by network interface with RDMA
support

–  CPU can dedicate more time to computation rather than handling communication

•  A two-sided message can employ RDMA for only part of the communication
–  Each message requires the target to provide the destination address
–  Offloaded to network interface in networks like Quadrics

•  RDMA makes it apparent that MPI has added costs associated with ordering to
make it usable as a end-user programming model

dest. addr.

message id

data payload

data payload

one-sided put (e.g., GASNet)

two-sided message (e.g., MPI)

network
 interface

memory

host
CPU

70 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Latency Advantages
•  Comparison:

–  One-sided:
•  Initiator can always transmit

remote address
•  Close semantic match to high

bandwidth, zero-copy RDMA
–  Two-sided:

•  Receiver must provide
destination address

•  Latency measurement correlates
to software overhead
–  Much of the small-message

latency is due to time spent in
software/firmware processing

do
w

n
is

 g
oo

d

One-sided implementation consistently
outperforms 2-sided counterpart

71 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Bandwidth Advantages
•  One-sided semantics better match to

RDMA supported networks
–  Relaxing point-to-point ordering

constraint can allow for higher
performance on some networks

–  GASNet saturates to hardware peak
at lower message sizes

–  Synchronization decoupled from data
transfer

•  MPI semantics designed for end user
–  Comparison against good MPI

implementation
–  Semantic requirements hinder MPI

performance
–  Synchronization and data transferred

coupled together in message passing

Over a factor of 2 improvement
for 1kB messages

up is good

72 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Bandwidth Advantages (cont)

•  GASNet and MPI saturate
to roughly the same
bandwidth for “large”
messages

•  GASNet consistently
outperforms MPI for “mid-
range” message sizes

up is good

73 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

A Case Study: NAS FT
•  How to use the potential that the microbenchmarks reveal?

•  Perform a large 3 dimensional Fourier Transform
–  Used in many areas of computational sciences

•  Molecular dynamics, computational fluid dynamics, image processing,
signal processing, nanoscience, astrophysics, etc.

•  Representative of a class of communication intensive
algorithms
–  Sorting algorithms rely on a similar intensive communication pattern
–  Requires every processor to communicate with every other processor
–  Limited by bandwidth

74 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Performing a 3D FFT (part 2)
•  Perform an FFT in all three dimensions
•  With 1D layout, 2 out of the 3 dimensions are local while the last Z

dimension is distributed

Step 1: FFTs on the columns
 (all elements local)

Step 2: FFTs on the rows
 (all elements local)

Step 3: FFTs in the Z-dimension
 (requires communication)

75 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Performing the 3D FFT (part 3)
•  Can perform Steps 1 and 2 since all the data is

available without communication
•  Perform a Global Transpose of the cube

–  Allows step 3 to continue

Transpose

76 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

The Transpose
•  Each processor has to scatter input domain to other

processors
–  Every processor divides its portion of the domain into P pieces
–  Send each of the P pieces to a different processor

•  Three different ways to break it up the messages
1.  Packed Slabs (i.e. single packed “Alltoall” in MPI parlance)
2.  Slabs
3.  Pencils

•  An order of magnitude increase in the number of messages
•  An order of magnitude decrease in the size of each message
•  “Slabs” and “Pencils” allow overlapping communication and

computation and leverage RDMA support in modern networks

77 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Algorithm 1: Packed Slabs

Example with P=4, NX=NY=NZ=16

1.  Perform all row and column FFTs
2.  Perform local transpose

–  data destined to a remote processor
are grouped together

3.  Perform P puts of the data

Local transpose

put to proc 0

put to proc 1

put to proc 2

put to proc 3

•  For 5123 grid across 64 processors
–  Send 64 messages of 512kB each

78 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Bandwidth Utilization
•  NAS FT (Class D) with 256 processors on Opteron/

InfiniBand
–  Each processor sends 256 messages of 512kBytes
–  Global Transpose (i.e. all to all exchange) only achieves

67% of peak point-to-point bidirectional bandwidth
–  Many factors could cause this slowdown

•  Network contention
•  Number of processors that each processor communicates with

•  Can we do better?

79 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Algorithm 2: Slabs
•  Waiting to send all data in one phase

bunches up communication events
•  Algorithm Sketch

–  for each of the NZ/P planes
•  Perform all column FFTs
•  for each of the P “slabs”
 (a slab is NX/P rows)

–  Perform FFTs on the rows in the slab
–  Initiate 1-sided put of the slab

–  Wait for all puts to finish
–  Barrier

•  Non-blocking RDMA puts allow data
movement to be overlapped with
computation.

•  Puts are spaced apart by the amount
of time to perform FFTs on NX/P rows

Start computation
for next plane

plane 0

put to proc 0

put to proc 1

put to proc 2

put to proc 3

•  For 5123 grid across 64
processors
–  Send 512 messages of

64kB each

80 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Algorithm 3: Pencils
•  Further reduce the granularity of

communication
–  Send a row (pencil) as soon as it is ready

•  Algorithm Sketch
–  For each of the NZ/P planes

•  Perform all 16 column FFTs
•  For r=0; r<NX/P; r++

–  For each slab s in the plane
»  Perform FFT on row r of slab s
»  Initiate 1-sided put of row r

–  Wait for all puts to finish
–  Barrier

•  Large increase in message count
•  Communication events finely diffused

through computation
–  Maximum amount of overlap
–  Communication starts early

plane 0
0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3

Start computation
for next plane

•  For 5123 grid across 64
processors
–  Send 4096 messages

of 8kB each

81 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Communication Requirements
•  5123 across 64 processors

–  Alg 1: Packed Slabs
•  Send 64 messages of 512kB

–  Alg 2: Slabs
•  Send 512 messages of 64kB

–  Alg 3: Pencils
•  Send 4096 messages of 8kB

With Slabs GASNet is slightly faster than
MPI

GASNet achieves close to peak bandwidth
with Pencils but MPI is about 50% less
efficient at 8k With the message sizes in Packed Slabs both

comm systems reach the same peak bandwidth

82 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Platforms
Name Processor Network Software

Opteron/Infiniband
“Jacquard” @ NERSC

Dual 2.2 GHz Opteron
(320 nodes @ 4GB/
node)

Mellanox Cougar
InfiniBand 4x HCA

Linux 2.6.5, Mellanox
VAPI, MVAPICH 0.9.5,
Pathscale CC/F77 2.0

Alpha/Elan3
“Lemieux” @ PSC

Quad 1 GHz Alpha
21264 (750 nodes @
4GB/node)

Quadrics QsNet1
Elan3 /w dual rail (one
rail used)

Tru64 v5.1, Elan3
libelan 1.4.20, Compaq
C V6.5-303, HP Fortra
Compiler
X5.5A-4085-48E1K

Itanium2/Elan4
“Thunder” @ LLNL

Quad 1.4 Ghz Itanium2
(1024 nodes @ 8GB/
node)

Quadrics QsNet2 Elan4 Linux 2.4.21-chaos,
Elan4 libelan 1.8.14,
Intel ifort 8.1.025, icc 8.
1.029

P4/Myrinet
“FSN” @
UC Berkeley Millennium
Cluster

Dual 3.0 Ghz Pentium 4
Xeon (64 nodes @ 3GB/
node)

Myricom Myrinet 2000
M3S-PCI64B

Linux 2.6.13, GM 2.0.19,
Intel ifort
8.1-20050207Z, icc
8.1-20050207Z

83 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Comparison of Algorithms
•  Compare 3 algorithms against

original NAS FT
–  All versions including Fortran

use FFTW for local 1D FFTs
–  Largest class that fit in the

memory (usually class D)
•  All UPC flavors outperform

original Fortran/MPI
implantation by at least 20%

–  One-sided semantics allow
even exchange based
implementations to improve
over MPI implementations

–  Overlap algorithms spread the
messages out, easing the
bottlenecks

–  ~1.9x speedup in the best
case

up is good

84 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Time Spent in Communication
•  Implemented the 3

algorithms in MPI using
Irecvs and Isends

•  Compare time spent
initiating or waiting for
communication to finish
–  UPC consistently spends

less time in
communication than its
MPI counterpart

–  MPI unable to handle
pencils algorithm in some
cases

312.8 34.1 28.6

M
P

I C
ra

sh
 (P

en
ci

ls
)

do
w

n
is

 g
oo

d

85 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Conclusions
•  One-sided semantics used in GAS languages, such as UPC,

provide a more natural fit to modern networks
–  Benchmarks demonstrate these advantages

•  Use these advantages to alleviate communication
bottlenecks in bandwidth limited applications
–  Paradoxically it helps to send more, smaller messages

•  Both two-sided and one-sided implementations can see
advantages of overlap
–  One-sided implementations consistently outperform two-sided

counterparts because comm model more natural fit

•  Send early and often to avoid communication bottlenecks

86 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Try It!

•  Berkeley UPC is open source
–  Download it from http://upc.lbl.gov

87 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Contact Us

•  Authors
–  Christian Bell
–  Dan Bonachea
–  Rajesh Nishtala
–  Katherine A. Yelick
–  Email us:

•  upc@lbl.gov

 Special thanks to the fellow
members of the Berkeley
UPC Group

•  Wei Chen
•  Jason Duell
•  Paul Hargrove
•  Parry Husbands
•  Costin Iancu
•  Mike Welcome

•  Associated Paper: IPDPS ‘06 Proceedings
•  Berkeley UPC Website: http://upc.lbl.gov
•  GASNet Website: http://gasnet.cs.berkeley.edu

88 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

P2P Sync (PGAS’06)

89 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Efficient Point-to-Point
Synchronization in UPC

Dan Bonachea, Rajesh Nishtala,
Paul Hargrove, Katherine Yelick

U.C. Berkeley / LBNL

http://upc.lbl.gov

90 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Outline
•  Motivation for point-to-point sync operations
•  Review existing mechanisms in UPC
•  Overview of proposed extension
•  Microbenchmark performance
•  App kernel performance

91 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Point-to-Point Sync: Motivation
•  Many algorithms need point-to-point synchronization

–  Producer/consumer data dependencies (one-to-one, few-to-few)
•  Sweep3d, Jacobi, MG, CG, tree-based reductions, …

–  Ability to couple a data transfer with remote notification
–  Message passing provides this synchronization implicitly

•  recv operation only completes after send is posted
•  Pay costs for sync & ordered delivery whether you want it or not

–  For PGAS, really want something like a signaling store (Split-C)
•  Current mechanisms available in UPC:

–  UPC Barriers - stop the world sync
–  UPC Locks - build a queue protected with critical sections
–  Strict variables - roll your own sync primitives

•  We feel these current mechanisms are insufficient
–  None directly express the semantic of a synchronizing data transfer

•  hurts productivity
•  Inhibits high-performance implementations, esp on clusters

–  This talk will focus on impact for cluster-based UPC implementations

92 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

•  Works well for apps that are naturally bulk-synchronous
–  all threads produce data, then all threads consume data
–  not so good if your algorithm doesn't naturally fit that model

 shared [] int data[…];
upc_memput(&data,…);

upc_barrier; upc_barrier;
 /* consume data */

barrier:
over-synchronizes
threads
high-latency due to
barrier
no overlap on producer

Point-to-Point Sync Data Xfer in UPC
Thread 1 Thread 0

93 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

 shared [] int data[…];
 int f = 0;
 upc_lock_t *L = …;

upc_lock(&L);

 upc_memput(&data,…);
 f = 1;

upc_unlock(&L);
 while (1) {

 upc_lock(&L);
 if (f) break;
 upc_unlock(&L);

 }
 /* consume data */

Point-to-Point Sync Data Xfer in UPC

upc_locks:
latency 2.5+ round-trips
limited overlap on
producer

Thread 1 Thread 0

•  This one performs so poorly on clusters that we won't consider it further…

94 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

 strict int f = 0;
upc_memput(&data,…);
f = 1;
 while (!f) bupc_poll();
 /* consume data */

 strict int f = 0;

h = bupc_memput_async(&data,…);
 /* overlapped work… */
bupc_waitsync(h);
upc_fence;
h2 = bupc_memput_async(&f,…);
 /* overlapped work… */
bupc_waitsync(h2); while (!f) bupc_poll();
 /* consume data */

Point-to-Point Sync Data Xfer in UPC
memput + strict flag:
latency ~1.5 round-
trips
no overlap on
producer

non-blocking
memput + strict flag:
allows overlap
latency ~1.5 round-
trips
higher complexity

Thread 1 Thread 0

•  There are several subtle ways to get this wrong
–  not suitable for novice UPC programmers

95 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Signaling Put Overview

 bupc_sem_t *sem = …;

bupc_memput_signal(…,sem); bupc_sem_wait(sem);
/* overlap compute */ /* consume data */

•  Friendly, high-performance interface for a synchronizing, one-
sided data transfer
–  Want an easy-to-use and obvious interface

•  Provide coupled data transfer & synchronization
–  Get overlap capability and low-latency end-to-end
–  Simplify optimal implementations by expressing the right semantics
–  Without the downfalls of full-blown message passing

•  still one-sided in flavor, no unexpected messages, no msg ordering costs
–  Similar to signaling store operator (:-) in Split-C, with improvements Thread 1 Thread 0

memput_signal:
latency ~0.5 round-
trips
allows overlap
easy to use

96 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Point-to-Point Synchronization:
Signaling Put Interface

•  Simple extension to upc_memput interface
 void bupc_memput_signal(shared void *dst, void *src, size_t nbytes,

 bupc_sem_t *s, size_t n);

–  Two new args specify a semaphore to signal on arrival
–  Semaphore must have affinity to the target
–  Blocks for local completion only (doesn't stall for ack)
–  Enables implementation using a single network message

•  Async variant
void bupc_memput_signal_async(shared void *dst, void *src, size_t nbytes,

 bupc_sem_t *s, size_t n);

–  Same except doesn't block for local completion
–  Analogous to MPI_ISend
–  More overlap potential, higher throughput for large payloads

97 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Point-to-Point Synchronization:
Semaphore Interface

•  Consumer-side sync ops - akin to POSIX semaphores
–  void bupc_sem_wait(bupc_sem_t *s); block for signal "atomic down"
–  int bupc_sem_try(bupc_sem_t *s); test for signal "test-and-down"
–  Also variants to wait/try multiple signals at once "down N"
–  All of these imply a upc_fence

•  Opaque sem_t objects
–  Encapsulation in opaque type provides implementation freedom
–  bupc_sem_t *bupc_sem_alloc(int flags);
–  void bupc_sem_free(bupc_sem_t *s);
–  flags specify a few different usage flavors

•  eg one or many producer/consumer threads, integral or boolean signaling
•  Bare signal operation with no coupled data transfer:

–  void bupc_sem_post(bupc_sem_t *s); signal sem "atomic up (N)"
–  post/wait sync that might not exactly fit the model of signaling put

non-collectively
creates a sem_t
object with affinity to
caller

98 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Microbenchmark Performance
of Signaling Put

99 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Signaling Put: Microbenchmarks

•  memput (roundtrip) + strict put: Latency is ~ 1½ RDMA put roundtrips
•  bupc_sem_t: Latency is ~ ½ message send roundtrip

–  same mechanism used by eager MPI_Send - so performance closely matches

(d
ow

n
is

 g
oo

d)

CITRIS @ UC Berkeley
1.3 GHz Itanium-2
Myrinet PCI-XD
MPICH-GM 1.2.6..14a
Linux 2.4.20

RDMA put or
message send
latency:
~13 us round-trip

100 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

•  memput (roundtrip) + strict put: Latency is ~1½ RDMA put roundtrips
•  bupc_sem_t: Latency is ~½ RDMA put roundtrip

–  sem_t and MPI both using a single RDMA put, at least up to 1KB

(d
ow

n
is

 g
oo

d)

Jacquard @ NERSC
2.2 GHz Opteron
Mellanox InfiniBand 4x
Linux 2.6.5-7.276
MVAPICH 0.9.5-mlx1.0.3

Signaling Put: Microbenchmarks
RDMA put
latency:
~10.5us round-
trip

101 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Using Signaling Put to
Implement Tree-based

Collective Communication

102 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Performance Comparison: UPC Broadcast

UPC-level 
implementation of
collectives!
Tree-based
broadcast - show
best performance
across tree geom.!

memput_signal
competitive with
MPI broadcast
(shown for
comparison)!

(d
ow

n
is

 g
oo

d)

103 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Performance Comparison: All-Reduce-All

 Dissemination-based
implementations of
all-reduce-all collective

 memput_signal
consistently outperforms
memput+strict flag,
competitive w/ MPI

 Over a 65% improvement
in latency at small sizes

(d
ow

n
is

 g
oo

d)

104 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Using Signaling Put  
in Application Kernels"

105 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Performance Comparison: SPMV
(d

ow
n

is
 g

oo
d)

75% improvement in synchronous communication time  
28% improvement in total runtime (relative to barrier)"

106 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

•  Incorporates both
SPMV and All Reduce
into an app kernel

•  memput_signal speeds
up both SPMV and All
Reduce portions of the
application

•  Leads to an 15%
improvement in overall
running time

(d
ow

n
is

 g
oo

d)

Performance Comparison: Conjugate Gradient

107 Berkeley UPC: http://upc.lbl.gov!
Titanium: http://titanium.cs.berkeley.edu

Conclusions
•  Proposed a signaling put extension to UPC!

•  Friendly interface for synchronizing, one-sided data transfers"
•  Allows coupling data transfer & synchronization when needed"
•  Concise and expressive"

•  Enable high-perf. implementation by encapsulating the right semantics"
•  Allows overlap and low-latency, single message on the wire"

•  Provides the strengths of message-passing in a UPC library"
•  Remains true to the one-sided nature of UPC communication"
•  Avoids the downfalls of full-blown message passing"

•  Implementation status!
•  Functional version available in Berkeley UPC 2.2.2"
•  More tuned version available in 2.3.16 and upcoming 2.4 release"

•  Future work!
•  Need more application experience"
•  Incorporate extension in future revision of UPC standard library"

