
Analysis of PFLOTRAN on Jaguar

Kevin Huck, Jesus Labarta, Judit Gimenez, Harald Servat, Juan
Gonzalez, and German Llort

CScADS – Workshop on Performance Tools for Petascale Computing
August 2-5, 2010 – Snowbird, UT

August 2-5, 2010 CScADS Workshop 2

How this got started...
● As part of a Dagstuhl seminar in May, 2010, the

Performance Tools group performed large-scale
performance analysis of two applications on two
machines
● PEPC – Pretty Efficient Parallel Coulomb-solver

– Parallel tree code for rapid computation of long-range
Couomb forces in N-body particle systems

● PFLOTRAN
– Modeling Multiscale-Multiphase-Multicomponent Subsurface

Reactive Flows Using Advanced Computing
● Jaguar – XT5 at Oak Ridge National Laboratory
● Jugene – BG/P at Jülich Supercomputing Center

August 2-5, 2010 CScADS Workshop 3

PFLOTRAN Overview
● Using PERI “Tiger Team” instructions*, build and

run PFLOTRAN on the target systems
● Opportunity! - porting Extrae measurement system

to a new architecture: XT5
● Challenge... - porting Extrae measurement system

to a new architecture (ongoing)
● Using scalable trace collection methods, traces

were collected using 8k, 12k and 16k processes
on Jugene, 8k processes on Jaguar

* http://secure-water.org/wiki/index.php?title=PFLOTRAN_Tiger_Team_Instructions

http://secure-water.org/wiki/index.php?title=PFLOTRAN_Tiger_Team_Instructions

August 2-5, 2010 CScADS Workshop 4

PFLOTRAN Overview, continued
● Iteration-based simulation with two main stages:

FLOW and TRANsfer
● Based on PETSc, uses BCGS solver (IBCGS

solver developed, but not yet accepted)
● Input dataset computes with 1+Billion degrees of

freedom in TRAN stage, relatively little
computation in the FLOW stage

● FLOW scales poorly, TRAN scales well

August 2-5, 2010 CScADS Workshop 5

BSC Performance Tools Overview
● Extrae 2.0 – measurement library

● Default behavior: measures time between MPI calls or
OpenMP synchronization points
– Stores the callpath to the event

● User Functions using instrumentation
– Source or Dyninst

● Sampling support
● Options for scalable trace collection

● Paraver – trace visualizer (OTF supported)
● Our initial setup: “burst” traces with 20ms threshold

● Some MPI statistics, but no detail
● 10 iterations, 8K cores yields a ~1.8GB trace

August 2-5, 2010 CScADS Workshop 6

Jaguar – Useful Duration with 8k cores

Color indicates length of computation
burst between MPI calls

Paraver timeline view: x-axis is time,
y-axis is process, compressed display
which gives priority to larger values.
This timeline is a gradient from bright
green (smallest value) to deep blue
(largest value).

...but zooming in reveals imbalance

Appears balanced...

FLOW
TRAN

August 2-5, 2010 CScADS Workshop 7

Jaguar – Useful Duration with 8k cores

Color indicates length of computation
burst between MPI calls

Paraver timeline view: x-axis is time,
y-axis is process, compressed display
which gives priority to larger values.
This timeline is a gradient from bright
green (smallest value) to deep blue
(largest value).

...but zooming in reveals imbalance

Appears balanced...

“Sawtooth” pattern among
nodes, and some processes
have very little work to do
(horizontal bright green
strips)

FLOW
TRAN

August 2-5, 2010 CScADS Workshop 8

Jaguar – Non Useful Duration

FLOW
TRAN

Non-Useful Duration shows the
inverse pattern – time spent in
short computation bursts and
non computation (MPI)

...zooming in reveals imbalance

August 2-5, 2010 CScADS Workshop 9

Jaguar – Non Useful Duration

FLOW
TRAN

Non-Useful Duration shows the
inverse pattern – time spent in
short computation bursts and
non computation (MPI)

Some higher ranked processes
have less work, and consequently
spend more time in MPI

Data distribution
causing this pattern?

August 2-5, 2010 CScADS Workshop 10

TRAN Analysis

August 2-5, 2010 CScADS Workshop 11

Comparing imbalances: 8192 to 8184

BA C
8192 = 32 x 32 x 8

8184 = 31 x 44 x 6

Timelines of
1 Tran Iteration

For longest bursts, more
variance with 8184 – other
processes have to wait

0.0 to 1.85 seconds

A B C

A B C

P
rocesses 0 …

 8192
P

rocesses 0 ... 8184

Histograms of times

total = X * Y * Z

August 2-5, 2010 CScADS Workshop 12

Load Balance Computation

Stage Procs Solver Total
(sec)

Compute
Avg

Compute
Max

Compute
Min

Comp.
Avg/Max

Flow

8192 BCGS 10.21 40.47% 59.45% 0.22% 0.68

8192 IBCGS 7.75 48.83% 55.33% 0.58% 0.88

8184 IBCGS 7.23 47.43% 53.63% 0.62% 0.88

Tran

8192 BCGS 35.51 91.90% 99.04% 9.37% 0.93

8192 IBCGS 36.76 91.78% 100.21% 12.23% 0.92

8184 IBCGS 35.49 88.66% 99.55% 10.37% 0.89

Statistics from 1 selected iteration

August 2-5, 2010 CScADS Workshop 13

Jaguar – Clustering of 8k run

Color indicates cluster ID
Length indicates computation burst length

We chop one inner iteration from the
Transport linear solver iterations,
split it in half, and cluster each half

SNESComputeJacobian
KSPSolve

BCGS
Iterations

LineSearch

August 2-5, 2010 CScADS Workshop 14

Jaguar – Clustering of Jacobian

Color indicates cluster ID
Length indicates computation burst length Outliers as small as ~0 seconds!

Table here

Cluster Name NOISE Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Density 237 3685 2169 990 573 275 151

Total duration 2.70E+011 6.95E+012 3.94E+012 1.92E+012 1.02E+012 4.70E+011 2.77E+011

Avg. duration 1.14E+009 1.89E+009 1.82E+009 1.94E+009 1.78E+009 1.71E+009 1.83E+009

%Total duration 0.00% 47.66% 27.04% 13.20% 6.99% 3.22% 1.90%

mean TOT_INS 2.86E+009 4.62E+009 4.45E+009 4.77E+009 4.62E+009 4.45E+009 4.77E+009

August 2-5, 2010 CScADS Workshop 15

Jaguar – Clustering of Jacobian

Color indicates cluster ID
Length indicates computation burst length Range of ~1.66 to ~1.975 seconds

Table here

Cluster Name NOISE Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Density 237 3685 2169 990 573 275 151

Total duration 2.70E+011 6.95E+012 3.94E+012 1.92E+012 1.02E+012 4.70E+011 2.77E+011

Avg. duration 1.14E+009 1.89E+009 1.82E+009 1.94E+009 1.78E+009 1.71E+009 1.83E+009

%Total duration 0.00% 47.66% 27.04% 13.20% 6.99% 3.22% 1.90%

mean TOT_INS 2.86E+009 4.62E+009 4.45E+009 4.77E+009 4.62E+009 4.45E+009 4.77E+009

August 2-5, 2010 CScADS Workshop 16

Clusters of Clusters – Z dimension

8 groups8 groups
of 1024of 1024
processesprocesses

Color indicates cluster IDColor indicates cluster ID

32 groups32 groups
●of 8 and 24of 8 and 24

8
 24

August 2-5, 2010 CScADS Workshop 17

Clusters of Clusters – Y dimension

Color indicates cluster IDColor indicates cluster ID

32 groups32 groups
of 8 and 24of 8 and 24

Color indicates cluster IDColor indicates cluster ID

alternating clustersalternating clusters
of 18 and 14of 18 and 14
processesprocesses

18
 14

18
 14

August 2-5, 2010 CScADS Workshop 18

Clusters of Clusters – X dimension

Color indicates cluster IDColor indicates cluster IDColor indicates cluster IDColor indicates cluster ID

alternating clustersalternating clusters
of 18 and 14of 18 and 14
processesprocesses

Color indicates cluster IDColor indicates cluster ID

...and first process on each...and first process on each
node usually finishes firstnode usually finishes first

Color indicates node IDColor indicates node ID

August 2-5, 2010 CScADS Workshop 19

Clustering of KSPSolve

Cluster Name NOISE Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

Density 4981 3849 3619 2660 2163 16007 16151 6281

Total duration 7.16E+011 2.90E+012 2.17E+012 1.93E+012 1.24E+012 1.10E+012 1.00E+012 7.82E+011

Avg. duration 1.44E+008 7.53E+008 5.99E+008 7.26E+008 5.74E+008 6.86E+007 6.22E+007 1.24E+008

%Total duration 0 0.19 0.14 0.13 0.08 0.07 0.07 0.05

PAPI_TOT_INS 3.39E+008 5.23E+008 1.81E+009 1.06E+007 1.66E+009 4.41E+006 1.74E+009 1.34E+007

Color indicates cluster ID
Length indicates computation burst length

Outliers as small as ~0 seconds!

August 2-5, 2010 CScADS Workshop 20

Clustering of KSPSolve

Color indicates cluster ID
Length indicates computation burst length

Cluster Name NOISE Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

Density 4981 3849 3619 2660 2163 16007 16151 6281

Total duration 7.16E+011 2.90E+012 2.17E+012 1.93E+012 1.24E+012 1.10E+012 1.00E+012 7.82E+011

Avg. duration 1.44E+008 7.53E+008 5.99E+008 7.26E+008 5.74E+008 6.86E+007 6.22E+007 1.24E+008

%Total duration 0 0.19 0.14 0.13 0.08 0.07 0.07 0.05

PAPI_TOT_INS 3.39E+008 5.23E+008 1.81E+009 1.06E+007 1.66E+009 4.41E+006 1.74E+009 1.34E+007

Outliers as small as ~0 seconds!

August 2-5, 2010 CScADS Workshop 21

Clustering of KSPSolve

Color indicates cluster ID
Length indicates computation burst length

Cluster Name NOISE Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

Density 4981 3849 3619 2660 2163 16007 16151 6281

Total duration 7.16E+011 2.90E+012 2.17E+012 1.93E+012 1.24E+012 1.10E+012 1.00E+012 7.82E+011

Avg. duration 1.44E+008 7.53E+008 5.99E+008 7.26E+008 5.74E+008 6.86E+007 6.22E+007 1.24E+008

%Total duration 0 0.19 0.14 0.13 0.08 0.07 0.07 0.05

PAPI_TOT_INS 3.39E+008 5.23E+008 1.81E+009 1.06E+007 1.66E+009 4.41E+006 1.74E+009 1.34E+007

Outliers as small as ~0 seconds!

August 2-5, 2010 CScADS Workshop 22

FLOW Stage

August 2-5, 2010 CScADS Workshop 23

FLOW stage
● As also measured by PERI team, a lot of time is

spent in MPI_Allreduce.
● Computation / Communication ratio is ~1
● What is causing irregular iteration lengths in the

Flow phase?
● Suspected process migration or preemption

● We collected a detailed trace of 1 iteration (9th
iteration of 10 total) of a 8k process run to see if
there is something causing long MPI_Allreduce
times
● 1 iteration of FLOW stage = ~45GB

August 2-5, 2010 CScADS Workshop 24

Useful Duration Timeline View

Computing bursts

Long collective communication
delayed by single outlier(s)...

~20ms

Color indicates length of computation
burst between MPI calls

August 2-5, 2010 CScADS Workshop 25

Point-to-Point Communication

...which causes delays in MPI_Waitall()...

~20ms

Color indicates length of
Point-to-point MPI call ...a few other processes are waiting...

August 2-5, 2010 CScADS Workshop 26

MPI Call View

...and long delays in MPI_Waitall() result in long MPI_Allreduce() times

All other processes are waiting
in MPI_Allreduce() (pink)

Processes waiting in MPI_Waitall() (grey-green)
(yellow lines are communication)

Two delayed processes
(black gaps)

Five processes
finally sync up

Color indicates MPI call

August 2-5, 2010 CScADS Workshop 27

Useful Duration View (same zoom)

...but WHY are these two processes delayed?
Possibly a process migration or preemption problem...

Processes waiting in MPI_Allreduce()
Two delayed processes
(blue lines)

Five processes
finally sync up

Color indicates length of computation
burst between MPI calls

August 2-5, 2010 CScADS Workshop 28

Cycles per microsecond view

These two processes were allocated less cycles during these
computation bursts, but executed the same instructions as their peers

Color indicates instructions executed,
length indicates time

Color indicates cycles per microsecond,
length indicates time

August 2-5, 2010 CScADS Workshop 29

Further Investigation
● We theorized that the pre-emptions were not

interrupts, but daemons or some kind of system
process “starving” our MPI processes

● Could pinning the processes to the cores help?
● Three options: (none worked)

● Pin to CPU
● Pin to Core (default!)
● Pin to Node (no pinning)

● What about leaving cores free for the OS?
● Use only 11 cores
● Use only 10 cores

“Reducing Application Runtime Variability
On Jaguar XT5”, Oral et al, CUG 2010

August 2-5, 2010 CScADS Workshop 30

Pinning Results – 10 iterations
Default (pin to core) – 488 seconds

Explicit Pin to Core (“fastest”) – 463 seconds

Pin to CPU (NUMA) – 455 seconds

No pinning (slowest) – 620 seconds

Color indicates Cycles per microsecond

(timelines not to scale)

August 2-5, 2010 CScADS Workshop 31

Pinning – zoomed view
Default

Pin to Core (“fastest”)

Color indicates Cycles per microsecond

Pre-emptions have significant effect In FLOW stage

...but not in the TRAN stage

(timelines not to scale)

August 2-5, 2010 CScADS Workshop 32

“Spare” core results – no improvement
682 nodes, 7502 total cores – 538 seconds

744 nodes, 8184 total cores – 448 seconds

682 nodes, 6820 total cores – 566 seconds

819 nodes, 8184 total cores (last 6 unused) – 536 seconds

150 Seconds!

(timelines not to scale)

August 2-5, 2010 CScADS Workshop 33

Pinning Results
● Noise still occurred... but an insight was gained
● Clouds of noise occur every ~150 seconds
● Starts gradually, all nodes participate, then stops
● Always happened, regardless of whether there

were extra cores or not – does not happen on the
same core of each node

● Dramatic effect on runtime when noise was
synchronized with FLOW stage of the iteration

August 2-5, 2010 CScADS Workshop 34

Simple Kernel to Reproduce Problem
● We tried to reproduce preemptive behavior with a

simple test
● 4 MPI_Start() calls, 1 MPI_Startall() call followed

by a short computation, 4 MPI_Waitany() calls and
1 MPI_Waitall() call, followed by a short
computation and an MPI_Allreduce() call – all
repeated 835 times

● 48 Processes laid out in 2D grid, communication is
with four neighbors

August 2-5, 2010 CScADS Workshop 35

Simple Program Timeline

150 seconds between preemptions

5 preemptions of >9ms every 150 seconds

...not just possible to happen, but guaranteed(?) to happen on every node, every 150 seconds

August 2-5, 2010 CScADS Workshop 36

Next Steps:
● Experiments with High Performance Linux (HPL)
● Modified current Linux kernel scheduler

● Real Time Class
● HPC Class (new)
● Normal Class
● Idle Class

● If an HPC process or thread is ready to run, it is given
priority over all other normal tasks, including OS

● Improvement over standard scheduler, which is biased
towards interactive responsiveness, not batch

“A Global Operating System for HPC Clusters”, Betti et al., CLUSTER 2009
“Designing OS for HPC Applications: Scheduling”, Gioiosa et al., draft

August 2-5, 2010 CScADS Workshop 37

Conclusion
● Tran

● Load balance can be improved
● Clustering of bursts shows structure of load imbalance

– Structure of clustering related to data decomposition

– Many underutilized “noise” points

● Recommend better decomposition strategy
● Try StarSs/SMPSuperscalar* implementation – load balanced

parallelism through runtime data flow analysis

● Flow
● The solver is too synchronous for larger scales
● Is there a potential for overlap – can an improved solver overlap

communication and computation?
● Large effect from system noise resonance

*http://www.bsc.es/plantillaG.php?cat_id=385

http://www.bsc.es/plantillaG.php?cat_id=385

August 2-5, 2010 CScADS Workshop 38

BSC Performance Tools
● For more information, contact:

● tools@bsc.es

● To contact the presenter:
● kevin.huck@bsc.es

● To download the open-source BSC Performance
Tools:
● http://www.bsc.es/paraver, select the “Downloads” link

mailto:tools@bsc.es
mailto:kevin.huck@bsc.es
http://www.bsc.es/paraver

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

