
NERSC Overview
CSADS Workshop on PetaScale

Applications and Performance Strategies

Katie Antypas
HPC Consultant

July 27, 2009

NERSC Mission

The mission of the National Energy
Research Scientific Computing Center
(NERSC) is to accelerate the pace of
scientific discovery by providing high
performance computing, information, data,
and communications services for all DOE
Office of Science (SC) research.

2

NERSC is the Production
Facility for DOE

Getting an HPC allocation

• Not as hard as you might think
– If you have an abstract of your research goals applying will

take you 30 min or so
• A small allocation is stepping stone toward a large

allocation when you need it. It helps you build a
computing relationship with DOE and project
reviewers.

• NERSC
– https://nim.nersc.gov/newpi.php

• ANL
– https://accounts.alcf.anl.gov/accounts/projects/intrepid.htm

• ORNL
– http://www.nccs.gov/user-support/access/project-request

Account Support and HPC
Consulting

• Account support
– Passwords (NERSC does not use OTP keys)
– New accounts
– Modify accounts (add user to project)

• HPC Consulting
– 9 Consultants to serve NERSC users
– Aim to provide fast helpful advice from simple to complex

• I can’t submit my job
• What library should I use?
• My code is performing slowly
• My code compiled on my department cluster but now …

– Please contact the consultants!
– We are paid to help make you more productive
– We have often seen your problem many times before with

other users

Consulting Goals

• Usability and Productivity
– Users need more than just computing

• Storage HPSS
• Data analysis
• Fast network access
• Reasonable turn around time
• Easy access to help

• Get you up and running quickly
– Extensive tutorials
– Web examples www.nersc.gov
– Help from consultants

NERSC Training Accounts

• Training accounts available for workshop
• Access to NERSC Machines

– “ssh train15@franklin.nersc.gov”
• Just need to sign form and I will give you

password
• Queue with boosted priority already set up

– Up to 24k cores
– 6 hour wall clock limit
– 20 concurrent jobs for the group

• Come talk to me at the break

Systems

10

HPSS Archival Storage
• 59 PB capacity
• 11 Tape libraries
• 140 TB disk cache

NERSC 2009 Configuration

11

Large-Scale Computing System

Franklin (NERSC-5): Cray XT4
• 9,740 nodes; 38,128 cores
• 38 Tflop/s sustained SSP
• 355 Tflops/s peak
• 8 GB of memory per quad core node

Clusters

Bassi (NCSb)
• IBM Power5 (888 cores)

Jacquard (NCSa)
• LNXI Opteron (712 cores)

PDSF (HEP/NP)
• Linux cluster (~1K cores)

NERSC Global
 Filesystem (NGF)
IBM’s GPFS
440 TB; 5.5 GB/s

Analytics /
Visualization

• Davinci (SGI
Altix)

NERSC6 and SU2009

• NERSC6
– Announcing with 1-2 weeks
– Procured to increase computing

capacity of the center by 3-5x.
– Stay tuned!

• SU2009 (Scalable Unit Cluster)
– NERSC users have needs for a pure

Linux cluster
• Many promising projects start from

departmental clusters and need to
scale up

• Easy porting for new users
• Best system for complex workflow

models
• Some applications best suited for Linux

Cluster

NERSC Global Filesystem (NGF)

• Seamless data access from
NERSC’s computational and
analysis resources

• Single unified namespace
makes it easier for users to
manage their data across
multiple system

• Goals: Functionality,
Reliability, Performance

• Uses IBM’s GPFS filesystem

• Access HPSS from any
NERSC resource with:

•HIS
•HTAR
•ftp/pftp

• Outside NERSC must
do a few extra steps

• 61+ million files
• 44 PB capacity

Large Storage Environment (HPSS)

Franklin Programming
Environment

• Compilers (Fortran, C, C++)
– PGI
– PathScale
– GNU

• Parallel Programming Models: Cray MPICH2 MPI,
Cray SHMEM, Open MP

• AMD Core Math Library (ACML): BLAS, LAPACK,
FFT, Random number generators, GNU Fortran
libraries

• LibSci scientific library: ScaLAPACK, BLACS,
SuperLU

• Profiling tools CrayPat, Apprentice2, IPM, TAU
• Performance API (Papi)
• Modules

!

Extensive 3rd Party Software

• Check to make sure your application isn’t already
installed

• Use modules command to see software availability on
all NERSC machines (“module avail”)

• Math - acml, aztec, dfftpack, fftw, gsl, LibSci, parmetis,
parpack, petsc, pspline, superlu, sprng

• I/O - hdf5, nco, netcdf, pnetcdf
• Chemistry/Mat Sci - amber, namd, nwchem, abinit,

cpmd, lammps, quantum expresso, siesta, vasp
• Visualization - idl, gnuplot, visit, ncar
• Debuggers - Allinea’s DDT

!

Franklin Overview

Compute
 Node

No
local
disk

Login
 Node

Login
 Node

Login
 Node etc….

/home

Login
 Node

Login
 Node

/scratch

Login
 Node etc….

/project
HPSS

Full Linux OS CNL (no logins)

Compute
 Node

Compute
 Node

Compute
 Node

Etc …
Compute

 Node
Compute

 Node
Compute

 Node

What kind of OS?

USER PITFALL!!
• Consider what kind of OS you are using

– Limited OS
• Depends on system but limited OS calls
• Features which could be limited on compute

nodes
– Shared libraries (support coming soon)
– Scripting languages, python, perl
– Process control (fork, exec)
– Can’t ssh from compute node to compute node
– Can’t call system() from Fortran parallel job
– No Java on the compute nodes
– No X-Windows support on compute nodes

Memory Considerations

USER PITFALL!!
• Each Franklin compute node has 8GB of

memory.
• Running 4 cores per node 7.38 GB of user

addressable memory
– CNL kernel, uses ~300 MB of memory.
– Lustre uses about 17 MB of memory
– MPI buffer size is about ~100 MB.

• Quad core MPI jobs have ~1.83 GB/task.
• Change MPI buffer sizes by setting certain

MPICH environment variables.
• Hints for adjusting MPICH variables on

website

Running a Job on Franklin

Login Node

Actually 1 dual-core chip

1. Log in from your
desktop using SSH

2. Compile your code or
load a software module

3. Write a job script
4. Submit your script to

the batch system
5. Monitor your job’s

progress
6. Archive your output
7. Analyze your results

On a Franklin login node:

Login nodes run full
version of SUSE

Linux

www.nersc.gov/nusers/status/queues/franklin/

NERSC Analytics server (DaVinci)

Batch Queues

• At NERSC users submit jobs to a queue and
wait in line to run

• Queue policies are set to:
– Be fair
– Accommodate needs

• Users
• DOE strategic

– Encourage high parallel concurrency
– Maximize scientific productivity

• Special requests always given consideration
– Reservations
– Emergencies

Batch Queues

• debug: short, small test runs
• interactive: implicit in qsub –I
• regular: production runs

– Jobs > 512 nodes given 50% discount
• premium: I need it now, 2X charge

– Fast turn around on Franklin, not usually needed
• low: I can wait a while: 50% discount
• special: unusual jobs by prior

arrangement

IO on Franklin

23

•/home and /scratch(s) file use Lustre File System
/project uses GPFS file system
Failures happen - recommend checkpointing code

Scratch Disk Space

USER PITFALL!!• Disk space is expensive and therefore limited
and shared among users

• Every center must manage disk space in
some way (purging, begging, quotas)

• Understand the disk usage policy at your
center

• Be a courteous disk space user. We want
you to run very large jobs, but then we want
you to back up your files (quickly)

Disk Quotas

USER PITFALL!!
• Franklin has multiple file systems

– /home (Default 15GB)
• Backed up
• Permanent

– /scratch and /scratch2 (Default 500 GB)
• Purged of files older than 12 weeks
• Not backed up
• Not permanent

– /project (NERSC Global Filesystem)
• Accessible from all NERSC machines
• Currently need to request access

• Users can not submit jobs when over quota
• Projects needing larger disk quotas just need to ask

Franklin IO Upgrade

• I/O upgrade in March tripled Franklin’s I/O bandwidth from
11GB/sec to ~32 GB/sec
– Doubled # of I/O nodes
– Distributed them more evenly within machine

• Created 2 /scratch file systems
• Increased /scratch storage by 30%

I/O Performance Monitoring During Production Time
using 64 proc IOR Test

/scratch
/scratch2

Lustre Monitoring Tool

/scratch

Lustre Monitoring Tool

/scratch2

But what about my application?

• Most I/O bandwidth out of a Franklin node
– 1 core: 350-400 MB/sec
– 2 cores: 700 - 800 MB/sec
– 3 cores: ~1100 MB/sec
– 4 cores: ~1100 MB/sec

Serial I/O

0 1 2 3 4

File

processors

• Each processor sends its data to the
master who then writes the data to a
file

• Advantages
• Simple
• May perform ok for very small IO sizes

• Disadvantages
• Not scalable
• Not efficient, slow for any large number
of processors or data sizes

• May not be possible if memory
constrained

5

Parallel I/O Multi-file

0 1 2 3 4

File File File File File

processors

•Each processor writes its own data to a separate file
•Advantages

• Simple to program
• Can be fast

• Disadvantages
• Can quickly accumulate many files
• Hard to manage
• Requires post processing
• Difficult for storage systems, HPSS, to handle many small files

5

File

Parallel I/O Single-file

0 1 2 3 4

File

processors

•Each processor writes its own data to the same file using MPI-IO
mapping

•Advantages
• Single file
• Manageable data

• Disadvantages
• Lower performance than one file per processor at some concurrencies

5

Common Storage Formats

• ASCII:
– Slow
– Takes more space!
– Inaccurate

• Binary
– Non-portable (eg. byte ordering and types sizes)
– Not future proof
– Parallel I/O using MPI-IO

• Self-Describing formats
– NetCDF/HDF4, HDF5, Parallel NetCDF
– Example in HDF5: API implements Object DB model in portable file
– Parallel I/O using: pHDF5/pNetCDF (hides MPI-IO)

• Community File Formats
– FITS, HDF-EOS, SAF, PDB, Plot3D
– Modern Implementations built on top of HDF, NetCDF, or other self-describing

object-model API

Many NERSC
users at this level.
We would like to

encourage users to
transition to a

higher IO library

What is Striping?

• Lustre file system on Franklin made up of
an underlying set of file systems calls
Object Storage Targets (OSTs), essentially
a set of parallel IO servers

• File is said to be striped when read and
write operations access multiple OSTs
concurrently

• Striping can be a way to increase IO
performance since writing or reading from
multiple OSTs simultaneously increases
the available IO bandwidth

What is Striping?

• File striping will most likely improve
performance for applications which read
or write to a single (or multiple) large
shared files

• Striping will likely have little effect for the
following type of IO patterns
– Serial IO where a single processor performs all

the IO
– Multiple node perform IO, but access files at

different times
– Multiple nodes perform IO simultaneously to

different files that are small (each < 100 MB)
– One file per processor

NERSC Striping Command
Shortcuts

• Unfortunately users need to know about striping in
order to get decent I/O performance for I/O intensive
applications

• NERSC has tried to encapsulate messy details with 3
commands

• Usage >> stripe_large mydirectory
File Per Processor
I/O

Ask consultants“stripe_large”100GB - 1TB+

“stripe_fpp” or use
default striping

“stripe_med”10GB - 100 GB

“stripe_fpp” or use
default striping

“stripe_small”1GB - 10 GB

“stripe_fpp” or use
default striping

Do Nothing Use
default striping

<1 GB

Single File I/OSize of File

Full Striping Commands

• Striping can be set at a file or directory level
• Set striping on an directory then all files created in that directory

with inherit striping level of the directory
• Moving a file into a directory with a set striping will NOT change

the striping of that file

• stripe-size -
– Number of bytes in each stripe (multiple of 64k block)

• OST offset -
– Always keep this -1
– Choose starting OST in round robin

• stripe count -
– Number of OSTs to stripe over
– -1 stripe over all OSTs
– 1 stripe over one OST

lfs setstripe <directory|file> <stripe size> <OST Offset> <stripe count>

Recommendations

• Think about the big picture
– Run time vs Post Processing trade off
– Decide how much IO overhead you can afford
– Data Analysis

• Is there analysis you can do during your production run?
– Portability
– Longevity

• H5dump/ncmpidump works on all platforms
• Can view an old file with h5dump/ncmpidump
• If you use your own binary format you must keep track of

not only your file format version but the version of your
file reader as well

– Storability

Recommendations

• Use a standard IO format, even if you are following a
one file per processor model

• One file per processor model really only makes some
sense when writing out very large files at high
concurrencies, for small files, overhead is low

• If you must do one file per processor IO then at least
put it in a standard IO format so pieces can be put
back together more easily

• Follow striping recommendations
• Consider the value of your time -- even if your advisor

is not
• Ask the consultants, we are here to help!

Portability and Flexibility

• HPC machines change quickly
– NERSC does technology refresh every 3 years
– Always consider challenge for users moving to

machine but we need to keep up with technology
and market

• Codes become more robust when run on
multiple platforms with multiple compilers

• Familiarity with different programming
models, performance tools and debuggers
gives you an advantage

• Be prepared to be able to move from center
to center - go where the cycles are

NERSC Science Over the Years

Please let us know what we can do to help!

Consult@nersc.gov
41

