
The Latest and Greatest in the
 Dyninst Binary Code Toolkit

Madhavi Krishnan
Matthew LeGendre

Bill Williams

– 2 –

MRNet
DyninstAPI

Binary

Analysis

Binary

Rewriting

Dynamic

Instrumentation

Code Parsing

Process

Control

Instruction

Evaluation

DepGraphAPI

StackwalkerAPI

SymtabAPI

InstructionAPI

Code Generation

Instrumenter

Scalable

Communication

Group File

Communication

MRNet Frontend

Filters

Backends

MRNet Frontend

– 3 –

Dyninst Components
 Updates on existing components

• SymtabAPI
• InstructionAPI
• StackwalkerAPI

 New component
• DepGraphAPI

 Proposed new components
• Parsing
• Instruction Semantics
• Process Control

– 4 –

Updates
 SymtabAPI 6.0

• New: binary modification interface
• New: function, variable abstractions

 InstructionAPI 1.0
 StackwalkerAPI 1.0

• Initial releases

– 5 –

SymtabAPI Rewriting
 Binary rewriting functionality available

through SymtabAPI
• Open existing binary
• Add new symbols
• Add library dependencies
• Add new code and data regions
• Add intermodule references
• Modify existing code and data
• Write binary

– 6 –

 Add a function symbol to a binary:
 /* Open a file */

 Symtab *symt;
 Symtab::openFile(symt, “a.out”);

 /* Add Symbol */

 symt->createFunction(“func1” /*name*/,
 0x1000 /*offset*/,
 100 /*size*/);

 /* Write new binary */

 symt->emit(“rewritten.out”);

SymtabAPI Rewriting

– 7 –

DepGraphAPI
 A little static analysis can save a ton of

 instrumentation
 What if we need more detail than a CFG?

• Example: stack pointer aliasing
 Construct dependence graphs to solve these

 problems

– 8 –

Example: Stack Pointer Aliasing
/* Build the PDG for a function */
PDG::Ptr pdg = PDG::analyze(func);

/* Find the node for initial SP */
pdg->find(entryAddr, sp, nodeBegin, nodeEnd);

/* Find the forward slice using the SP */
pdg->forwardClosure(*nodeBegin, sliceBegin,
 sliceEnd);

for(; sliceBegin != sliceEnd; ++sliceBegin)
/* Do stuff */

– 9 –

DepGraphAPI Features
 Current

• Builds data dependence graph based on:
– Register reads/writes
– Stack reads/writes

• Builds control dependence graphs
• Builds program dependence graphs

 Future
• Tuning: precision vs. speed
• Other feature requests?

– 10 –

Isolating Dyninst’s Parsing

SymtabAPI,
InsructionAPI

Low-level Dyninst

High-level Dyninst
instrumentation,
process control, etc.

gritty binary code
details

Map binary
code to
useful

structures

CFG creation
Function lookup
Resolving indirect
control flow

Dyninst Functionality

A parsing
component?

– 11 –

ParsingAPI Features

•  Builds CFG from binary code

•  Fine-grain lookup interface
- functions, basic blocks, instructions

•  Engineered to support “weird” binaries
- Highly optimized code
- Stripped binaries

•  “Views”
- (more on this in a moment)‏
- Easily updatable representations

– 12 –

Binary Code Views
Support multiple abstractions of code

program

binary

control flow graph
call graph
 contiguous
code regions

What other views are
useful?

– 13 –

Instruction Semantics
 Detailed analysis beyond InstructionAPI

 Example: stack height analysis
• Effect of push/pop on SP
• Effect of stack arithmetic
• Aliasing

– 14 –

Design: Open Questions
 Internal: we evaluate what it does

• Symbolic evaluation
 External: we describe what it does

• Transfer function
• ASTs

 What views are useful to the community?

– 15 –

Process Control: Goals
  Develop an API to manage processes and events

•  Control the process:
–  Start/stop
–  Attach/detach
–  …

• Modify the process:
–  Read/write address space

• Monitor the process
–  Fork/exec
–  Thread create/destroy
–  Library load/unload
–  Signals

• …
 Use OS’s debugger interface.

– 16 –

Threading Challenges
 Will have to deal with multiple sources of input

Process Control
API

Process

Process

Process

User

OS Debugger Interface

User Requests

A
sync E

vents

Worker thread User thread

Worker thread

Worker thread

Dispatch thread

– 17 –

Proposed Architecture

Thread management

Multithreaded interface

Thread-safe process control implementation

Single-threaded interface

– 18 –

Bases for Implementation
  DyninstAPI implementation

•  Supports Linux, AIX, Solaris, Windows
•  Already has a working (but complex) threading model
• Old and well tested

  StackwalkerAPI’s debugger interface
•  Supports Linux, BlueGene
•  Simpler design
•  Already has a component interface

  Likely to build something that descends from both

Questions?

– 20 –

Tree-based Overlay Networks for
 Scalable Performance

Tools/
Apps

Tools/
Apps

Tools/
Apps

Tools/
Apps

FrontEnd

 CommNode

 CommNode CommNode

 CommNode CommNode

 BackEnd BackEnd BackEnd BackEnd

Filter
State

Packet
Filter

– 21 –

MRNet Features
 Scalable multicast and aggregation
 Flexible topologies
 Reliability during node failures
 Filters:

• Dynamically configurable
• Stateful

 Built-in and User-defined filters:
• Transformation Filters
• Synchronization Filters

– 22 –

Example: Tracing Tool

FrontEnd

 CommNode

 CommNode CommNode

Tool

 BackEnd BackEnd

Tool

 BackEnd

Tool

 BackEnd

Tool

Transformation Filter
Synchronization Filter

– 23 –

/* Setup */

network = new Network(topology_file, backend_exe, …);
transFilter = network->load_FilterFunc (“FuncTraceFilter“,…);
syncFilter = network->load_FilterFunc (“SyncTraceFilter“,…);
comm = network->get_BroadcastCommunicator();
stream = network->new_Stream(comm, transFilter, syncFilter,…);

/* Send */
tag = PROT_START_TRACE;

stream->send(tag, “%d”, type_func_trace)

/* Receive */

retval = stream->recv(&tag, packet);
char **func_trace; int func_trace_len;

packet->unpack(“%as", &func_trace, &func_trace_len) ;

storeFunctionTrace(func_trace, func_trace_len);

Programming with MRNet: Front End

– 24 –

Programming with MRNet: Back End
/* Setup */
network = new Network(...);

/* Receive Request*/
network->recv(&tag, packet, &stream);

/* Process Request */
switch(tag){
 case PROT_START_TRACE:
 packet->unpack(“%d”, &trace_type);
 collectTrace(trace_type, &trace);
 /* Send */
 stream->send(tag, “%as”, trace);
 break;
 case ...:
}

– 25 –

 Tracing: Transformation Filter
void FuncTraceFilter(packets_in, packets_out,
 filter_state, config_params)

{
 /* Receive and Process Input Packets */
 for (i=0; i < packets_in.size(); i++) {

 cur_packet = packets_in[i];
 cur_packet->unpack(“%as”, &trace);
 mergeTraces(&trace);

 }

 /* Send Output Packet */

 PacketPtr new_packet = new Packet (trace, …);
 packets_out.push_back(new_packet);
 return;

}

– 26 –

Tracing: Synchronization Filter
void SyncFilter(packets_in, packets_out,

 filter_state, config_params)
{
 /* Get saved packets from filter state*/
 batch_size = getBatchSize(config_params);
 packets = getPrevPackets(filter_state);
 packets.push_back(packets_in);

 /* Batch up packets */
 if(packets.size() >= batch_size) {
 packets_out.push_back(packets);
 packets.clear();
 }

 updateFilterState(filter_state, packets);
 return;
}

– 27 –

gfd = gopen(char* dir, flags)

 Directory: a natural file system group abstraction
 Operating on Groups

•  Pass group file descriptor to file operations
•  Explicit aggregation of group file operation results

  Fit existing interfaces

 Scalable access and operations
•  TBŌNs are scalable => TBON-FS

Group File Operations

– 28 –

TBŌN-FS: Scalable Group File Operations
int rc = read(gfd, databuf, 1024)

/tmp /tmp /tmp /tmp

TBŌN-FS
Server

TBŌN-FS
Server

TBŌN-FS
Server

TBŌN-FS
Server

rc data rc data

rc data rc data

rc data

TBŌN

Status Aggregation

(compute sum)

Data Aggregation

(concatenate)

– 29 –

Example Group File Operations
  Identify equivalent files at BEs

•  group read to checksum files or compare contents
•  e.g., group equivalent binary executables

 Analyze trace log files
•  group read fixed-size records
•  custom trace aggregation

 Distributed Debugger
•  group write breakpoint
•  group read process memory

–  variable value equivalence class

– 30 –

Scalable Distributed Monitoring

Avg. %MEM
4096 processes

– 31 –

Case Studies
 Parallel Linux Tools
• ptop : observe resource utilization
• pgrep : inspect file contents
• ptail –f : follow file activity
• pcp, psync : duplicate files

 Ganglia distributed monitor

– 32 –

Questions

– 33 –

Mutatee
Process

a.out

libc.so

libapp.so

rewritten
a.out

rewritten
libapp.so

Static Binary Rewriting in Dyninst

a.out

libc.so

libapp.so

DyninstAPI

Parsing

SymtabAPI

Process Control

Instrumentation

– 34 –

Features
  Same Interface
  Instrument shared objects and executables
  Add new libraries to rewritten shared objects
  Generate calls between shared objects

  Operate on unmodified binaries.
• No debug information required
• No linker relocations required
• No symbols required

  Convenient for doing static binary analysis.

– 35 –

PLACEHOLDER SLIDE
 Run Demo here:

• Rewrite emacs and associated .so’s to generate
 an OTF trace.

 Major Points to illustrate:
• How easy it is to use

–  cat mutator source, should be fairly small
– Note that it uses the regular Dyninst interface

• How the binary changed
– Readelf/ldd on the binary, show how new libraries

 were added, .dyninst and other sections were added
 and moved.

Binary Rewriting

– 36 –

Future Work – Static Binaries
 Insert library into statically linked binaries

• Static binaries especially common in HPC.
• No existing infrastructure in static binaries for

 loading libraries.

 Ideas
• Append inserted library to end of static binary.
• Have Dyninst resolve inter-module references.

– But what if original binary is stripped?

– 37 –

Future Work - Ports
 Elf platforms

• Linux PPC-64 & IA-64
• Solaris/Sparc

 Windows/x86 under development

 AIX support
• Needs significant work for XCOFF rewriting

– 38 –

Questions?

Madhavi Krishnan
Matthew LeGendre

Bill Williams

– 39 –

Ganglia-tbonfs
@ 500 hosts

•  metrics collected at
 Ganglia default rates

gmetad
 50% less CPU use due
 to TBON aggregation

gmond (tbonfs-server)
 steady CPU use (.35%)
 vs. original gmond that
 increases linearly in
 cluster size

TBŌN

 RRD
Cluster

Aggregation

TBŌN

 RRD
Grid

Aggregation

TBŌN

 RRD
Cluster

Aggregation

gmetad
TBŌN-FS Client

TBŌN-FS
Server

TBŌN-FS
Server

TBŌN-FS
Server

TBŌN-FS
Server

Web Client

