The Latest and Greatest in the
Dyninst Binary Code Toolkit

Madhavi Krishnan
Matthew LeGendre
Bill Williams

DyninstAP]

SymtabAPI MRNet Frontend || MRNet Frontend

StackwalkerAPI Filters

InstructionAPI Backends

DepGraphAPI

Code Parsing

Process
Control

Instruction
Evaluation

Code Generation
|

Instrumenter

Dyninst Components

= Updates on existing components
. SymtabAPI
* InstructionAPT
» Stackwalker APT

= New component

* DepGraphAPI
= Proposed new components
* Parsing
* Instruction Semantics
* Process Control

Updates

= SymtabAPI 6.0
* New: binary modification interface
- New: function, variable abstractions

» TnstructionAPI 1.0

» StackwalkerAPI 1.0
- Tnitial releases

SymtabAPI Rewriting

= Binary rewriting functionality available
through SymtabAPT

» Open existing binary
» Add nhew symbols
» Add library dependencies

» Add new code and data regions
» Add intermodule references

* Modify existing code and data
* Write binary

SymtabAPI Rewriting

= Add a function symbol to a binary:
/* Open a file */
Symtab *symt;
Symtab: :openFile (symt, “a.out”);

/* Add Symbol */

symt->createFunction (“funcl” /*name*/,
0x1000 /*offset*/,
100 /*size*/);

/* Write new binary */

symt->emit (“rewritten.out”);

DepGraphAPI

= A little static analysis can save a ton of
instrumentation

* What if we need more detail than a CFG?
» Example: stack pointer aliasing

= Construct dependence graphs to solve these

problems

Example: Stack Pointer Aliasing

/* Build the PDG for a function */
PDG: :Ptr pdg = PDG: :analyze (func)

/* Find the node for initial SP */
pdg->find (entryAddr, sp, nodeBegin, nodeEnd);

/* Find the forward slice using the SP */

pdg->forwardClosure (*nodeBegin, sliceBegin,
sliceEnd) ;

for(; sliceBegin != sliceEnd; ++sliceBegin)
/* Do stuff */

DepGraphAPI Features

= Current

* Builds data dependence graph based on:
- Register reads/writes
- Stack reads/writes

» Builds control dependence graphs

» Builds program dependence graphs
= Future

» Tuning: precision vs. speed

» Other feature requests?

Isolating Dyninst's Parsing

Dyninst Functionality

High-level Dyninst Map binary
J Dy code to

instrumentation, useful
process control, efc. structures

CFG creation
Function lookup

Low-level Dyninst

gritty binary code D

details Resolving indirect

control flow

SymtabAPT,

InsructionAPI A parsing

component?

ParsingAPT Features

* Builds CFG from binary code

* Fine-grain lookup interface

- functions, basic blocks, instructions

» Engineered to support "weird" binaries
- Highly optimized code
- Stripped binaries

|\ * n
* "Views
- (more on this in a moment)
- Easily updatable representations

Binary Code Views

Support multiple abstractions of code

What other views are
useful?

program

IETRY \

call eraph control flow graph contiguous
grap grap code regions

—12-—

Instruction Semantics

= Detailed analysis beyond InstructionAPI

= Example: stack height analysis
» Effect of push/pop on SP
» Effect of stack arithmetic
» Aliasing

Design: Open Questions

» Tnternal: we evaluate what it does
» Symbolic evaluation
» External: we describe what it does

- Transfer function
- ASTs

= What views are useful to the community?

Process Control: Goals

= Develop an APTI to manage processes and events

» Control the process:
- Start/stop
- Attach/detach

: Mc;c'iify the process:

- Read/write address space

* Monitor the process
- Fork/exec
- Thread create/destroy
- Library load/unload
- Signals

- Usme OS's debugger interface.

Threading Challenges

= Will have to deal with multiple sources of input

User / Process

U R t
J SO REYUES'S / / Mo el A3 Worker thread

Process Control */= ‘ \
API T%~ Process

OS Debugger Interface Dispatch thread

/

Proposed Architecture

Multithreaded interface
Thread management
Single-threaded interface

Thread-safe process control implementation

Bases for Implementation

= DyninstAPT implementation
- Supports Linux, AILX, Solaris, Windows
» Already has a working (but complex) threading model
» Old and well tested

= StackwalkerAPI's debugger interface
» Supports Linux, BlueGene
- Simpler design
» Already has a component interface

= Likely to build something that descends from both

Questions?

Tree-based Overlay Networks for
Scalable Performance

Filter | Packet

CommNode CommNode

BackEnd BackEnd ° e BackEnd BackEnd

Tools/ Tools/ Tools/ Tools/
Apps Apps Apps Apps

- To

MRNet Features

= Scalable multicast and aggregation
= Flexible topologies

= Reliability during node failures

= Filters:

* Dynamically configurable
» Stateful

» Built-in and User-defined filters:

» Transformation Filters
» Synchronization Filters

—21-—

Example: Tracing Tool

<
B ——

CommNode

Transformation Filter
Synchronization Filter

CommNode CommNode

BackEnd BackEnd BackEnd BackEnd

Programming with MRNet: Front End

/* Setup */

network = new Network(topology file, backend exe, ..);

transFilter = network->load FilterFunc (“FuncTraceFilter™,..);

syncFilter = network->load FilterFunc (“SyncTraceFilter"™,..);
comm = network->get BroadcastCommunicator();

stream = network->new Stream(comm, transFilter, syncFilter,..);

/* Send */
tag = PROT START TRACE;

stream->send(tag, “%d”, type func trace)

/* Receive */
retval = stream->recv (&tag, packet);
char **func trace; int func trace len;

packet->unpack (“%as", &func trace, &func trace len)
storeFunctionTrace (func trace, func trace len);

—23—

Programming with MRNet: Back End

/* Setup */
network = new Network (...);

/* Receive Request*/
network->recv (&tag, packet, &stream);

/* Process Request */
switch (tag) {
case PROT START TRACE:

packet->unpack (“%d”, &trace type);
collectTrace (trace type, &trace);
/* Send */

stream->send (tag, “%as”, trace);
break;

case

Tracing: Transformation Filter

void FuncTraceFilter (packets in, packets out,
filter state, config params)

/* Receive and Process Input Packets */
for (1=0; 1 < packets in.size(); 1++) {

cur_packet = packets in[i];
cur packet->unpack (“%as”, &trace);

mergeTraces (&trace) ;

}

/* Send Output Packet */

PacketPtr new packet = new Packet (trace, ..);

packets out.push back(new packet);

return;

Tracing: Synchronization Filter

void SyncFilter (packets in, packets out,
filter state, config params)

/* Get saved packets from filter state*/
batch size = getBatchSize (config params);
packets = getPrevPackets (filter state);
packets.push back (packets in);

/* Batch up packets */

1f (packets.size() >= batch size) {
packets out.push back(packets);
packets.clear () ;

updateFilterState (filter state, packets);
return;

Group File Operations

gfd = gopen (char* dir, flags)

= Directory: a natural file system group abstraction

= Operating on Groups
» Pass group file descriptor to file operations
- Explicit aggregation of group file operation results

 Fit existing interfaces

= Scalable access and operations
- TBONss are scalable => TBON-FS

TBON-FS: Scalable Group File Operations

'rc|= read(gfd, |databuf|, 1024)
1

Status Aggregation Data Aggregation

(compute sum) _ (concatenate)

data data

s A
TBON-FS TBON-FS TBON-FS TBON-FS
Server Server Server Server

28—

Example Group File Operations

= Identify equivalent files at BEs
- group read to checksum files or compare contents
* e.g., group equivalent binary executables

= Analyze trace log files

» group read fixed-size records
- custom trace aggregation

= Distributed Debugger
- group write breakpoint

» group read process memory
- variable value equivalence class

—29—

Scalable Distributed Monitoring

nton - Thu Apr 24 22:46:20 2008

|1024 hosts up 96430.11 days, load average: 0.27, 0.11, 0.08

Taskz: 558112 total, 4296 run, 333816 sleep, 0 stopped, 0 zombie

CPU:| 4096 cpuis)|, 78.72% user, 0.86% sys, 0.00% nice, 19.65% idle, 0.76% wait
Mem: S441839552k total, 1059192128k used, 7382647424k free, 169089408k buffers
swap: 17182572544k total, 71227968k used,17111344576k free, 200214464k cached

.05 [4096 thonfs-server
.00 pBRzs ksoftirgd/1
07 584 ksoftirgd/2
44 eland mainint
e ksoftirgd/0
aftirgd/3

Avg. %MEM

—ng

4096 processes 4=
«ged

.00 e 1l ping

.00 @1020 .01 1020 lrmmond

.00 @752 .00 @752 irgbalance
.00 @68 .00 @68 kgswmal_sched
.00 @Bl004 .00 B1004 1ldlm _cn 14
.00 (1008 .00 (1008 ldlm cn 15

Case Studies

= Parallel Linux Tools
- ptop . observe resource utilization
e pgrep . inspect file contents
-ptail -f : follow file activity
e pCP, PSync . duplicate files

= Ganglia distributed monitor

Questions

Static Binary Rewriting in Dyninst

DyninstAP Mutatee
Process

rewritten

=
—N— N
=

libapp.so

rewritten
libapp.so
libapp.so

Features

= Same Interface

= Instrument shared objects and executables

= Add new libraries to rewritten shared objects
= Generate calls between shared objects

= Operate on unmodified binaries.
* No debug information required
* No linker relocations required
* No symbols required

= Convenient for doing static binary analysis.

PLACEHOLDER SLIDE

= Run Demo here:

* Rewrite emacs and associated .so's to generate
an OTF trace.

= Major Points to illustrate:
* How easy it is to use

- cat mutator source, should be fairly small
- Note that it uses the regular Dyninst interface

* How the binary changed

- Readelf/Idd on the binary, show how new libraries
were added, .dyninst and other sections were added
and moved.

Binary Rewriting

Future Work - Static Binaries

= Tnsert library into statically linked binaries
» Static binaries especially common in HPC.

* No existing infrastructure in static binaries for
loading libraries.

= Tdeas
» Append inserted library to end of static binary.

* Have Dyninst resolve inter-module references.
- But what if original binary is stripped?

Future Work - Ports

= EIf platforms
* Linux PPC-64 & TA-64

» Solaris/Sparc

= Windows/x86 under development

= AIX support
* Needs significant work for XCOFF rewriting

Questions?

Madhavi Krishnan
Matthew LeGendre
Bill Williams

— 38 —

Ganglia-tbonfs
@ 500 hosts

gmetad - metrics collected at
TBON-FS Client Ganglia default rates
A
gmetad

50% less CPU use due
to TBON aggregation

N gmond (tbonfs-server)

™ N)
- vl S steady CPU use (.35%)
TBON-FS "W TBON-FS TBON-FS W TBON-FS ..
vs. original gmond that
increases linearly in
cluster size

