Effective Performance

Measurement and Analysis
of Multithreaded Applications

Nathan Tallent
John Mellor-Crummey

Rice University

CSCabsS

N RICE hpctoolkit.org

http://hpctoolkit.org
http://hpctoolkit.org

Wanted: Multicore Programming Models

e Simple
— well-defined semantics
e.g., language may guarantee races never occur

— Pthreads is analogous to assembly language

* Expressive
— task and data parallelism
— nested and irregular parallelism

 High performance
— dynamic work balancing

 Future: Transparent scaling to increasing core counts
— performance = scaling (weak or strong)

Cilk is an early exemplar.
(TBB, X10/Habanero, MS Concurrency Runtime)

Cilk In a Nutshell

cilk int fib(n) {
if (n < 2) return n;
else {
int x, y;

x = spawn fib(n-1) ; @ @
y = spawn fib(n-2) ;

sync;
return/ (x + y) @ @ @
}
! () W WL W

asynchronou% calls
create logical tasks that ’ ’ ...quickly create significant

only block ata sync... logical parallelism.

Cilk Program Execution

e Challenge: Mapping logical tasks to compute cores

e Cilk approach:
— lazy thread creation plus work-stealing scheduler
e spawn: a potentially parallel task is available
« an idle thread steals tasks from a random working thread

(Possible Execution: A

thread 1 begins
thread 2 steals from 1
thread 3 steals from 1

_ etc...

What If My Cilk Program Is Slow?

e Cilk’s metrics

— measure of average parallelism for program + input
« parallelism = work / critical path

« lower bound on execution time (infinite number of cores)

e Strengths

— abstract measure of performance (machine independent)
— predictive insight for larger core counts

e Weaknesses
— not actionable
« if there is a bottleneck, where is it in my source code?
— abstract
* hides important architectural details: e.g., memory effects
— computed via instrumentation
« overhead perturbs application, affects compiler optimizations

Wanted: performance tools for threaded, parallel codes

Wanted: Call Path Profiles of Cilk

thread 1
thread 2

thread 3

Work stealing separates
user-level calling contexts in
space and time

Consider thread 3:
— physical call path:

Logical call path proflllng: Recover full relationship
between physical and user-level execution

Performance Analysis of Work Stealing

Three Complementary Techniques:

Quantify parallel idleness (insufficient parallelism)
Quantify parallel overhead

Recover logical calling contexts in presence of work-stealing

Attribute idleness and overhead to logical contexts
— Pinpoint idleness and overhead to user-level code

cilk int fib(n) {

if (n < 2) {...}

else {
int x, y;
x = spawn fib(n-1) ;
y = spawn fib(n-2) ;
sync;
return (x + y);

high parallel overhead from
creating many small tasks

Outline

Motivation
— multi-core: explicit shared memory parallelism
— languages: sophisticated, dynamically managed parallelism

Pinpointing and quantifying parallel bottlenecks

— insufficient parallelism

— parallelization overhead
Logical call path profiling

Conclusions

Parallel ldleness

 Parallel idleness:
— when a thread (core) is idle or blocked

 Pinpoint idleness with call path profiling
— use statistical sampling
* low, controllable overhead
* on a sample, each thread receives an async signal
— but...

* idleness is manifested as samples within scheduler
* blames the victim, not the perpetrator
* not actionable!

Measuring Parallel Idleness

* Metrics: Effort = “work” + “idleness”
— associate metrics with user-level calling contexts

— insight: attribute idleness to its cause: context of working thread

» Work stealing-scheduler: one thread per core (n cores)

— maintain nw and nw (working/non-working threads)
« slight modifications to work-stealing run time
— maintain node-wide counter for nw
— atomically decrement (incr.) when thread enters (exits) scheduler
 when a sample event interrupts a working thread
— Nw = N-= Ny
— apportion idleness to it: nw/ nw

e Example: Dual quad-cores; on a sample, 5 are working:

o o o o

foreach W+4+=1 > W=5 idle: drop sample
worker: Z +=3/5 ST =3 (it's in the scheduler!)

Summary

e |dleness metric:
— identifies the cause of idleness: code with insufficient parallelism

e Measurement approach:
— requires only lightweight scheduler support
— negligible measurement overhead w/ sampling

Outline

Motivation
— multi-core: explicit shared memory parallelism
— languages: sophisticated, dynamically managed parallelism

Pinpointing and quantifying parallel bottlenecks
— insufficient parallelism

— parallelization overhead

Logical call path profiling

Conclusions

Parallel Overhead

e Parallel overhead:

— when a thread works on something other than user code
« (we classify delays -- e.g., wait time -- as idleness)

* Pinpointing overhead with call path profiling:

— impossible, without prior arrangement
« work and overhead are both machine instructions

— possible approaches:
* instrumentation
— must support instruction level granularity
— not practical
 sampling?
— not clear how to distinguish overhead from work

13

Pinpointing Overhead In Parallel Languages

e Conceptual model:
— before: total effort = work + idleness
— refine: work = useful-work + overhead

e Approach:

— insight: compiler tags instructions contributing to overhead
« compiler knows which instructions are for overhead
« permits full and aggressive optimization
— call path profiling...
« attributes samples to instructions in context
— post-mortem analysis...
» partitions samples into useful-work and overhead

14

Pinpointing Overhead for Cilk

Benefits:

— requires only lightweight compiler support
(similar to support for debugging)

— permits a hierarchy of overhead categories
cf. cycle accounting

— can even be implemented as a preprocessor
— compatible with fully optimized code

— no measurement overhead

15

Using Parallel Idleness & Overhead

e Total effort = useful work + idleness + overhead

e Enables powerful and precise interpretations

idleness | overhead |interpretation

low low effectively parallel

low high coarsen concurrency granularity

high low refine concurrency granularity

high high switch parallelization strategies

e Normalize w.r.t. total effort to create
— percent idleness or percent overhead

 Applicable to many programming models
— Pthreads, OpenMP, Cilk, Intel TBB, etc.

Outline

* Motivation
— multi-core: explicit shared memory parallelism
— languages: sophisticated, dynamically managed parallelism

 Pinpointing and quantifying parallel bottlenecks
— insufficient parallelism
— parallelization overhead

* Logical call path profiling

e Conclusions

Recall: Call Path Profiling...

thread 1
thread 2
thread 3

Work stealing separates
user-level calling contexts in
space and time

Consider thread 3:
— physical call path:

— logical call path:

Logical call path profiling: Recover full relationship
between physical and user-level execution

Logical Call Paths

Recover relationship between physical and user-level execution

* Physical call path:
— a list of instruction pointers for active procedure frames

0—0—0—0—@® | top/ innermost frame

e Logical call path: generalization of physical call path
— a list of ‘bichords’ for physical-user frame relationships

p-chord: list of physical frames

«—| (instruction pointers)
O (@->0) (0-->0)
6 — top / innermost “bichord”
(@->@)

\

I-chord: list of logical frames
(opaque instruction pointer)

19

Logical Unwinding of Cilk

* The typical case (simplified):

thread’s physical stack

Cilk scheduler

Cilk ‘fast’ routines

sample

g

(@—e—0)

thread’s context (within Cilk, on heap)

One ‘1-to-Many’ bichord

Four ‘1-to-1’ bichords

user-level calling context

e More details in the paper
— theoretical
— implementation

Top-down Work for Cilk ‘Cholesky’

™ O O hpcviewer: cholesky (dual Barcelona)[--nproc 8 -n 3000 -z 30000] (@)
e cholesky.cilk &3 | ™% invoke-main.c e cilk.c = 0
650/*
651 * Compute Cholesky factorization of A.
652 */ m
652cilk Matrix cholesky(int depth, Matrix a) A
b L1 { T
| = -

13.5% of cilk main’s

"-\; Calling Context View Callers View h Flat View

total effort was spentin

|2 26| feo | idleness... I3}

work (all)® percent idleness percent overhead
v B cilk_main 5.14e+10 96.2% 98.3% 2.22e-01 26.2%
v B> cholesky 2.64e+10 49.4302.97e+00]21.5% J2.15e-01]25.3%
¥ B backsub 1.13e+10 21.1%1.38e-01 1.0% 2.59e-02 3.1%
> B backsub 5.83e+09 10.9%|1.29e-01 0.9% 2.59e-02 3.1% ||
» BY mul_and_subT 5.45e+09 10.2% |8.58e-03 0.1% 2.97% and 0-215% Of
v E‘.{}cholesky 0.9%e+10 18.6% |2.80e+00 20.3% 1.8 cholesky’s total effort
» B> cholesky 3.78e+09 7.1%|2.70e+00 19.63% 1.4 . spent in idleness
> B backsub 3.15e+09 5.9%|8.41e-02 0.6% 2.3 o 4 Suerhead. 9
» B> mul_and_subT [3.0le+09 5.6%(1.62e-02 0.1% 7.4
» B> mul_and_subT 5.19e+09 9.7%(2.97e-02 0.2%
» B> mul_and_subT 2.41e+10 45.1% |8.56e-02 0.6% 7.4le-03 0.9%
> [free_matrix 4.56e+08 0.9%|5.92e+00 42.9%
» B> num_nonzeros 1.26e+08 0.2%(1.63e+00 11.9% 21

Bottom-up Idleness for Cilk ‘Cholesky’

™ O O hpeviewer: cholesky (dual Barcelona)[--nproc 8 -n 3000 -z 30... 7O

Qcholesky cilk &3 | "% invoke-main.c e cilk.c = 0
Jétvoid free_matrix[(int depth, Matrix a)
2841
285 if (a == NULL)
286 return; m
287 if (depth == BLOCK_DEPTH) {
288 free(a);
289 } else {
290 depth--;
291 free_matrix(depth, a->child[_090]); . .
292 free_matrix(depth, a->child[_91]);| We can plnPOInt and
e -~ | quantify the effect of
"W Calling Context View | “%, Callers View| 1, Flat View serialization.
| & | 6& [feo W
Scope work (all). percent overhead
¥ _int_free 2.00e+08 O. m
» <3 free_matrix |1.92e+08 0.
R Pinpoints serial
1.50e+08 O. PIURT
: i . 26:+08 . initialization/finalization
numM_nonzeros . . .
> mag | 1eesos o routines.

22

Conclusion: Effective for Work Stealing

e Summary:
— Attribute idleness and overhead to logical contexts
— Pinpoint idleness and overhead to user-level code
— These metrics complement traditional hardware counters

e We have shown it is possible to:
— construct efficient, effective tools for complex multithreaded
languages
* intuitive metrics
user-level insight
— provide user-level insight with only minor run-time effects
« bridge chasm between user-level and run-time execution models
permit full optimization
— the version of the code that matters

— project detailed metrics to a much higher level of abstraction

23

What about lock contention?

* Lock contention => idleness:
— explicitly threaded programs (Pthreads, etc)
— implicitly threaded programs (critical sections in OpenMP, Cilk...)

 Extend work stealing idea for locks:
— Work-stealing: blame idleness on working threads
— Extension: blame lock waiting on lock holders

 Maintain:
: threads working in a lock critical section
: threads working otherwise
threads idling at a lock
threads idling otherwise (e.g., condition variable)

 On sampling a working thread:
— if in state W.: work =1, idleness =I. / WL
— if in state Wo: work = 1, idleness = 1o / Wo

Blame shifting: perpetrator, not suspects

* Problem with prior approach:
— blame is too diffuse for complex programs
— global counters leads to scalability problems

 |dea: communicate blame via locks (shared state)
— assume spin-waiting (contra sleep-waiting)

— sample a working thread:
« charge to ‘work’ metric
— sample an idle thread
« accumulate in idleness counter assoc. with lock (atomic add)

— working thread releases a lock:
- atomically swap 0 with lock’s idleness counter
« exactly represents contention while that thread held the lock
« unwind the call stack to locate lock contention in calling context

o “Blame shifting”: blames the perpetrator
— rather than the suspects or the victim

25

Blame shifting: implementation

e Ground rules:

— cannot change lock library (mem. overhead when not profiling)
— cannot have two lock libraries (requires recompilation/relink)

 Implementation challenges for Pthreads:
— must
« instrument locks to track working/idling
« alloc out-of-band shared state (spin lock only 32-bits)
- dynamically manage out-of-band state (cannot leak mem)
— consider a linked structure where each node has a lock
— problems
* locks are used by
— malloc and other glibc routines
* locks are used very early (before profiler state may be initialized)
— library constructors, static constructors
- alloc shared state in a ‘racy’ environment

— profiler may not be able to alloc at lock init point

26

The End

27

