
Effective Performance
Measurement and Analysis

of Multithreaded Applications
 Nathan Tallent

John Mellor-Crummey

Rice University

CSCaDS

hpctoolkit.org

http://hpctoolkit.org
http://hpctoolkit.org

Wanted: Multicore Programming Models
• Simple

— well-defined semantics
• e.g., language may guarantee races never occur

— Pthreads is analogous to assembly language

• Expressive
— task and data parallelism
— nested and irregular parallelism

• High performance
— dynamic work balancing

• Future: Transparent scaling to increasing core counts
— performance ≈ scaling (weak or strong)

2

Cilk is an early exemplar.
(TBB, X10/Habanero, MS Concurrency Runtime)

Cilk In a Nutshell

3

cilk int fib(n) {
 if (n < 2) return n;
 else {
 int x, y;
 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return (x + y);
 }
}

f(n-2)

f(n)

f(n-1)

f(n-3)f(n-2) f(n-4)f(n-3)

......

......

asynchronous calls
create logical tasks that
only block at a sync...

...quickly create significant
logical parallelism.

Cilk Program Execution
• Challenge: Mapping logical tasks to compute cores

• Cilk approach:
— lazy thread creation plus work-stealing scheduler

• spawn: a potentially parallel task is available
• an idle thread steals tasks from a random working thread

4

Possible Execution:
thread 1 begins
thread 2 steals from 1
thread 3 steals from 1
etc...

f(n-2)

f(n)

f(n-1)

f(n-3)f(n-2) f(n-4)f(n-3)

......

......

What If My Cilk Program Is Slow?
• Cilk’s metrics

— measure of average parallelism for program + input
• parallelism = work / critical path
• lower bound on execution time (infinite number of cores)

• Strengths
— abstract measure of performance (machine independent)
— predictive insight for larger core counts

• Weaknesses
— not actionable

• if there is a bottleneck, where is it in my source code?
— abstract

• hides important architectural details: e.g., memory effects
— computed via instrumentation

• overhead perturbs application, affects compiler optimizations

5
Wanted: performance tools for threaded, parallel codes

Wanted: Call Path Profiles of Cilk

• Consider thread 3:
— physical call path:

— logical call path:

6

thread 1
thread 2
thread 3

f(n-1) f(n-3) ...

f(n) f(n-1) f(n-3) ...

Logical call path profiling: Recover full relationship
between physical and user-level execution

Work stealing separates
user-level calling contexts in
space and time

f(n-2)

f(n)

f(n-1)

f(n-3)f(n-2) f(n-4)f(n-3)

......

......

Three Complementary Techniques:

Performance Analysis of Work Stealing

• Quantify parallel idleness (insufficient parallelism)

• Quantify parallel overhead

• Recover logical calling contexts in presence of work-stealing

• Attribute idleness and overhead to logical contexts
— Pinpoint idleness and overhead to user-level code

7

cilk int fib(n) {
 if (n < 2) {...}
 else {
 int x, y;
 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return (x + y);

high parallel overhead from
creating many small tasks

f(n) f(n-1) f(n-3) ...

• Motivation
— multi-core: explicit shared memory parallelism
— languages: sophisticated, dynamically managed parallelism

• Pinpointing and quantifying parallel bottlenecks
— insufficient parallelism
— parallelization overhead

• Logical call path profiling

• Conclusions

8

Outline

Parallel Idleness
• Parallel idleness:

— when a thread (core) is idle or blocked

• Pinpoint idleness with call path profiling
— use statistical sampling

• low, controllable overhead
• on a sample, each thread receives an async signal

— but...
• idleness is manifested as samples within scheduler
• blames the victim, not the perpetrator
• not actionable!

9

• Metrics: Effort = “work” + “idleness”
— associate metrics with user-level calling contexts
— insight: attribute idleness to its cause: context of working thread

• Work stealing-scheduler: one thread per core (n cores)
— maintain nw ̅ and nw (working/non-working threads)

• slight modifications to work-stealing run time
 – maintain node-wide counter for nw
 – atomically decrement (incr.) when thread enters (exits) scheduler

• when a sample event interrupts a working thread
 – nw̅ ﹦ n − nw

 – apportion idleness to it: nw̅ / nw

• Example: Dual quad-cores; on a sample, 5 are working:

Measuring Parallel Idleness

10

idle: drop sample
(it’s in the scheduler!)

W += 1
I += 3/5

∑
W = 5∑
I = 3

for each
worker:

Summary
• Idleness metric:

— identifies the cause of idleness: code with insufficient parallelism

• Measurement approach:
— requires only lightweight scheduler support
— negligible measurement overhead w/ sampling

11

• Motivation
— multi-core: explicit shared memory parallelism
— languages: sophisticated, dynamically managed parallelism

• Pinpointing and quantifying parallel bottlenecks
— insufficient parallelism
— parallelization overhead

• Logical call path profiling

• Conclusions

12

Outline

Parallel Overhead
• Parallel overhead:

— when a thread works on something other than user code
• (we classify delays -- e.g., wait time -- as idleness)

• Pinpointing overhead with call path profiling:
— impossible, without prior arrangement

• work and overhead are both machine instructions
— possible approaches:

• instrumentation
 – must support instruction level granularity
 – not practical

• sampling?
 – not clear how to distinguish overhead from work

13

Pinpointing Overhead In Parallel Languages
• Conceptual model:

— before: total effort = work + idleness
— refine: work = useful-work + overhead

• Approach:
— insight: compiler tags instructions contributing to overhead

• compiler knows which instructions are for overhead
• permits full and aggressive optimization

— call path profiling...
• attributes samples to instructions in context

— post-mortem analysis...
• partitions samples into useful-work and overhead

14

Pinpointing Overhead for Cilk
• Benefits:

— requires only lightweight compiler support
• (similar to support for debugging)

— permits a hierarchy of overhead categories
• cf. cycle accounting

— can even be implemented as a preprocessor
— compatible with fully optimized code
— no measurement overhead

15

Using Parallel Idleness & Overhead
• Total effort = useful work + idleness + overhead

• Enables powerful and precise interpretations

• Normalize w.r.t. total effort to create
— percent idleness or percent overhead

• Applicable to many programming models
— Pthreads, OpenMP, Cilk, Intel TBB, etc.

16

idleness overhead interpretation

low low effectively parallel

low high coarsen concurrency granularity

high low refine concurrency granularity

high high switch parallelization strategies

• Motivation
— multi-core: explicit shared memory parallelism
— languages: sophisticated, dynamically managed parallelism

• Pinpointing and quantifying parallel bottlenecks
— insufficient parallelism
— parallelization overhead

• Logical call path profiling

• Conclusions

17

Outline

Recall: Call Path Profiling...

• Consider thread 3:
— physical call path:

— logical call path:

18

thread 1
thread 2
thread 3

f(n-1) f(n-3) ...

f(n) f(n-1) f(n-3) ...

Logical call path profiling: Recover full relationship
between physical and user-level execution

Work stealing separates
user-level calling contexts in
space and time

f(n-2)

f(n)

f(n-1)

f(n-3)f(n-2) f(n-4)f(n-3)

......

......

Recover relationship between physical and user-level execution

Logical Call Paths

• Physical call path:
— a list of instruction pointers for active procedure frames

• Logical call path: generalization of physical call path
— a list of ‘bichords’ for physical-user frame relationships

19

top / innermost frame

p-chord: list of physical frames
(instruction pointers)

l-chord: list of logical frames
(opaque instruction pointer)

top / innermost “bichord”

Logical Unwinding of Cilk
• The typical case (simplified):

• More details in the paper
— theoretical
— implementation

20

thread’s physical stack

Cilk scheduler

sample

 Four ‘1-to-1’ bichordsOne ‘1-to-Many’ bichord

thread’s context (within Cilk, on heap)

steal

Cilk ‘fast’ routines

user-level calling context

Top-down Work for Cilk ‘Cholesky’

21

13.5% of cilk_main’s
total effort was spent in
idleness...

2.97% and 0.215% of
cholesky’s total effort
was spent in idleness
and overhead.

Cilk-
level
call
path

➊

➋

➌
percent percent

Bottom-up Idleness for Cilk ‘Cholesky’

22

Pinpoints serial
initialization/finalization
routines.

We can pinpoint and
quantify the effect of

serialization.

percentpercent

Conclusion: Effective for Work Stealing
• Summary:

— Attribute idleness and overhead to logical contexts
— Pinpoint idleness and overhead to user-level code
— These metrics complement traditional hardware counters

• We have shown it is possible to:
— construct efficient, effective tools for complex multithreaded

languages
• intuitive metrics
• user-level insight

— provide user-level insight with only minor run-time effects
• bridge chasm between user-level and run-time execution models
• permit full optimization

 – the version of the code that matters
— project detailed metrics to a much higher level of abstraction

23

What about lock contention?
• Lock contention => idleness:

— explicitly threaded programs (Pthreads, etc)
— implicitly threaded programs (critical sections in OpenMP, Cilk...)

• Extend work stealing idea for locks:
— Work-stealing: blame idleness on working threads
— Extension: blame lock waiting on lock holders

• Maintain:
— WL: threads working in a lock critical section
— WO: threads working otherwise
— IL: threads idling at a lock
— IO: threads idling otherwise (e.g., condition variable)

• On sampling a working thread:
— if in state WL: work = 1, idleness = IL / WL

— if in state WO: work = 1, idleness = IO / WO

24

Blame shifting: perpetrator, not suspects
• Problem with prior approach:

— blame is too diffuse for complex programs
— global counters leads to scalability problems

• Idea: communicate blame via locks (shared state)
— assume spin-waiting (contra sleep-waiting)
— sample a working thread:

• charge to ‘work’ metric
— sample an idle thread

• accumulate in idleness counter assoc. with lock (atomic add)
— working thread releases a lock:

• atomically swap 0 with lock’s idleness counter
• exactly represents contention while that thread held the lock
• unwind the call stack to locate lock contention in calling context

• “Blame shifting”: blames the perpetrator
— rather than the suspects or the victim

25

Blame shifting: implementation
• Ground rules:

— cannot change lock library (mem. overhead when not profiling)
— cannot have two lock libraries (requires recompilation/relink)

• Implementation challenges for Pthreads:
— must

• instrument locks to track working/idling
• alloc out-of-band shared state (spin lock only 32-bits)
• dynamically manage out-of-band state (cannot leak mem)

 – consider a linked structure where each node has a lock
— problems

• locks are used by
 – malloc and other glibc routines

• locks are used very early (before profiler state may be initialized)
 – library constructors, static constructors

• alloc shared state in a ‘racy’ environment
 – profiler may not be able to alloc at lock init point

26

The End

27

