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We identified three major issues with build systems and
software packaging

= Build Environment Issues
« Affects: developers
« Ease of use
— Learning curve, configurability
« Support for HPC platforms, as well as desktop environments
* Integration of component builds with others
— How do builds learn about dependencies?

= Packaging issues
« Affects: users, system maintainers
« How to bundle software for package management systems
 Easy installation on production machines

= Versioning
« Need for build-time and runtime version querying

CScADS Workshop on Tools 2011




Topics Discussed

= Build systems currently in use

« Custom shell scripts and Makefiles:
Scalasca, TAU, Dyninst

» Autotools:
ROSE, HPCToolkit, Open|SpeedShop, Dyninst (autoconf-ish), Score-P

« CMake:
LLNL Performance Tools, ROSE, CBTF, Marmot

= Many projects are trying out CMake
« LLNL Tools, ROSE, CBTF, Marmot
« some traction within Dyninst group




Issues with existing build systems

= Many custom build systems evolved because they predate Cmake/
Autotools

« Need custom support for HPC hardware
 Libtool broken

« Autoconf doesn’t handle many hpc machines
 Old versions of Cmake not robust enough

= Reasons for not revamping build systems
» Inertia, no time to rewrite code
« Need to support lowest common denominator
 Yet another dependence (i.e. Building Cmake)
« Autotools too complex

— Writing m4 macros and generating configure is time consuming and
error-prone




Build environment issues

= Need rapid integration of component modules
« Set of build-time queries one has to do is growing
— Many variables involved in using a library
— Need libraries to expose their own information, dependencies

= Want to reduce this to one simple variable
*  Where does this thing live?
« Deduce the rest automatically according to some standard

= Proposal: use a standard set of useful information about software to include in
distributions

« Basic build info (libraries, includes, flags, etc.)
« Dependence information
— What dependencies and what versions of them do | need?
— Conflicts with other libraries
— What compilers did | use? (C++, MPI, thing without ABIs)
« Action Item: Todd will make an initial “spec”, and a test validator for it

—  Group will hammer out the details
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Packaging Issues

= Affects users of the software

« Production environments need to bundle and keep software up to date
on many machines

« (Can make life easier for developers
« Don’t have to build tools they don’t intend to change

= Proposal: HPC package repository for tools
« Package server with packages for RPM, Deb, and MacPorts
» Action Item: Find a hosting location for this
— Jeff volunteers UMD if noplace else works.

« Action Item: Developers should post detailed instructions on how to
make different types of packages to a wiki
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Versioning Issues

= Libraries need way to check version at both build and runtime

« Allows workarounds for version —specific issues that make it into
production

 Allows graceful fail at runtime if incompatible dependent libraries are
detected

= Proposals:

« Action Item: Todd will make a list of recommendations for version
information to be included with installed config headers

 Action Item: Todd and Drew come up with naming convention/
recommendations for runtime version query routines

— These are extensions of existing build recommendations
» Builds should allow forcing things if these constraints are too strict
— -force, --dammit, etc.
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Conclusions

= Build discussion was very useful
« Allowed groups to become familiar with others’ systems and their issues

« Came up with proposals for standard ways to enable components between build
systems

— Exporting library information
- Enable finding components more easily

— Runtime, build time conventions

« Got familiar with different types of packaging
— Usefulness of packaging for users, sysadmins, and developers
— Started discussion on having standard repositories

= Build system discussion is useful

 Details usually swept under the rug in research environments
« Ironing out the details revealed more commonality than differences
— Same set of issues

= Recommendation: Common tools wiki for further ironing out these details




