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The Tool Scalability Problem

Key tasks:
o Application Control
o Data collection
o Data centralization/analysis

As scale increases,
front-end becomes bottleneck
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Tree-Based Overlay Networks (TBONs)

o Scalable multicast

o Scalable gather

o Scalable data aggregation

oNatural redundancy

FE

…… …BE

appappappapp

BE

appappappapp

BE

appappappapp

BE

appappappapp

CP CP

CP CP CP CP



4Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

MRNet – Multicast / Reduction Network
General-purpose TBON API

o Network: user-defined topology
o Stream: logical data channel

• to a set of back-ends
• multicast, gather, and custom 

reduction
o Packet: collection of data
o Filter: stream data operator

• synchronization
• transformation

Widely adopted by HPC tools
o CEPBA toolkit 
o Cray ATP & CCDB
o Open|SpeedShop & CBTF
o STAT
o TAU
o …
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TBON-FS : the TBON File System

Specialized TBON for 
distributed file access
o back-end data sinks/sources are files
o simplifies tool front-end development 

by providing an intuitive interface 
based on POSIX I/O

o custom tool back-end functionality via 
synthetic file systems loaded into 
TBON-FS servers

Uses MRNet for:
o scalable unified name space 

composition
o scalable group file operations
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Group File Operations

gfd = gopen(dir, flags, mode)

Operating on Groups
o Use group file descriptor with regular file operations 

(e.g., read and write)
• avoids iteration, one system call per group operation

o Semantics
• operation applied to each group member
• user-controlled aggregation of status and data results
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TBON-FS: Scalable Group File Operations
int rc = read(gfd, databuf, 1024) 
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Scalable Distributed Process Monitoring: ptop

Avg. %CPU 
4096 processes

4,096     
files

>1,000,000 
files

/proc/uptime   /proc/loadavg
/proc/stat    /proc/meminfo

/proc/$pid/stat

/proc/$pid/statm

/proc/$pid/status
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Group Process Control & Inspection

/proc : a good starting point
owrite to process/thread control file(s) to run/stop/signal 
o read files containing process/thread status
o read/write process address space
o read/write thread registers

But, 
o functionality differs by OS (e.g., no control on Linux)
o no notion of group operations
o always contains all host processes
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proc++ : Synthetic File System for Process Control

Improvements over /proc

1.process/thread groups
o explicit group management
o directories containing members’

control and inspection files 
automatically created

2. high-level debugger 
operations 
o breakpoints
o stepping
o stack walks

3. platform-independent 
interface

foreach(member){
restore_insn()
step_target()
insert_bkpt()
run_target()

}

run_group()

/proc proc++

Example: Continue group from breakpoint

MPMD

odd/even diagonal



11Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

proc++ : from the makers of Dyninst

Most capabilities provided by ProcControlAPI
o Cross-platform component library / C++ API

• Linux, FreeBSD, BlueGene, Windows

o Process / thread control and inspection
• Stop / continue processes, single-step threads
• Read / write process memory, thread registers
• Insert / remove breakpoints
• Inferior remote procedure calls
• Callbacks for asynchronous event notification

Thread stack walks (StackwalkerAPI)
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TotalView Parallel Debugger

Commercial debugger from Rogue Wave Software
o Sequential, multi-threaded, and parallel programs
o Fortran, C, C++ code from various compilers
o pthreads, OpenMP, MPI, UPC

20+ years of engineering and HPC experience
o Advanced MPI debugging
o Built-in memory debugger
o Reverse debugging (application DVR)
o Recent support for GPGPU (CUDA) code
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TotalView is a great case study

Most widely-used HPC debugger
o Lots of happy users

Known scalability limitations
o Lots of users that need it to work at full-scale on largest systems 

(i.e., @ 200K+ processes)

20+ years of engineering
o A real tool that works on real applications
o Modular architecture that evolved over time
o Operations on process and thread groups are primary focus
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TotalView: Original Architecture

Process Object

Thread Object

Group Object foreach( targ in grp )
{
tracer = targ.getTracer()
result = tracer.op(args)
targ.update( result )

}

Group Operation

OS
Tracer

server server server server server server

Debugger 
Layer

User 
Interface 

Layer

dbgGrp = grp.getDebugGrp()
result = dbgGrp.groupOp(args)
foreach( targ in grp )
targ.update( result )

Group Operation

appappappapp appappappapp appappappapp appappappapp appappappapp appappappapp

TotalView Client

FE

…BE

appappappapp

BE

appappappapp

BE

appappappapp

BE

appappappapp

… …



15Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

TotalView Integration Challenges

Group Operations
o no group operations at (lowest) tracer level

• pushed groups down to use group file operations

o some group operations at UI level use iteration
• added group operations at debugger level

o some group operations require process- or thread-
specific context
• extended proc++ interface and capabilities

Multi-level object maintenance
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TotalView: TBON-FS Architecture

Process Object

Thread Object

Group Object
rep = grp.getMember(0)
tracer = rep.getTracer()
result = tracer.groupOp(args)
foreach( targ in grp )
targ.update( result )

Group Operation

Debugger 
Layer

User 
Interface 

Layer

dbgGrp = grp.getDebugGrp()
result = dbgGrp.groupOp(args)
foreach( targ in grp )
targ.update( result )

Group Operation

proc++ 
Tracer

TBON-FS

proc++ proc++ proc++ proc++ proc++ proc++
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TotalView Client
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TotalView: MRNet Architecture

Process Object

Thread Object

Group Object
rep = grp.getMember(0)
tracer = rep.getTracer()
result = tracer.groupOp(args)
foreach( targ in grp )
targ.update( result )

Group Operation

Debugger 
Layer

User 
Interface 

Layer

dbgGrp = grp.getDebugGrp()
result = dbgGrp.groupOp(args)
foreach( targ in grp )
targ.update( result )

Group Operation

OS 
Tracer

MRNet

tracer tracer tracer tracer tracer tracer
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Group Tracer Operations

TotalView Client



Scalability: proc++ group writes
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Scalability: proc++ group reads
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Amdahl’s Law for Scalable Tools

Speed-up from using scalable group file operations is 
limited by front-end sequential behaviors

o reduce the number of objects per target
o reduce the state kept in those objects
o eliminate iterative allocation of objects
o eliminate iterative object state updates
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Keys to Real Tool Scalability

“iteration is the bane of scalability”- me
o any operation requiring a linear number of steps is a show-stopper

1. Limited sequential behavior in tool front-end
2.Good group representation

• efficient creation and update ⇒ distributed group state

3.Constant or logarithmic time group operations
• parallel execution across group members

4.Constant or logarithmic size data at tool front-end
• tool internal state: O(# of groups), not O(# of targets)
• user display of group data: scalable aggregation is necessary
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Tool Scalability “rules to live by”

1. Single-target operations must be efficient, but 
rarely used

2. On-demand data access (lazy evaluation)
• do not collect or generate data that is never used

3. Data Caching
• individual target data at tool front-end is a bad idea

leads to iterative cache invalidation and update
see rule #2

• individual target data at tool back-ends is a time/space tradeoff
• group data at tool front-end is a time/space tradeoff

caching within a TBON can limit both time and space
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Questions?

Group File Operations & TBON-FS
o International Conference on High Performance Computing (HiPC

2009) Best Paper
o ftp://ftp.cs.wisc.edu/paradyn/papers/Brim09GroupFile.pdf

Scalable Composition of File System Name Spaces
o International Workshop on Runtime and Operating Systems for 

Supercomputers (ROSS 2011)
o ftp://ftp.cs.wisc.edu/paradyn/papers/Brim11FinalNamespace.pdf

MRNet : http://www.paradyn.org/mrnet/
TBON-FS or proc++ Source Code (talk to me)
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TotalView Integration: proc++ Extensions

Problem: dynamic address space mappings

How can we do group address space write/read? 

executable executable executable

Rank 0 Rank i Rank N

0x400 0x400

libfoo

libbar

libfoo

libbar libfoo

libbar
0x800 0x800
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TotalView Integration: proc++ Extensions

Solution: image files that hide dynamic mappings

o one file for each mapped code image
o zero offset corresponds to map base of image
o to read / write symbols in image, seek to the 

symbol offset 

executable

Rank X

0x000

libfoo libbar


