Improving the Scalability of the TotalView
Debugger using TBONs

Michael . Brim

Paradyn Project, University of Wisconsin

John DelSignore

Rogue Wave Software

CScADS
August |, 201 |

g ——————— Dy
yn inst

The +eet-Scalability Problem
TotalView Debugger

Key tasks:
O Application Control
O Data collection

O Data centralization/analysis

As scale increases,
front-end becomes bottleneck

0(10,000) {

O(1,000,000) {

i’ Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ 2 inst

Tree-Based Overlay Networks (TBONSs)

O Scalable multicast
O Scalable gather

O Scalable data aggregation

O Natural redundancy

i’ Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ 3 inst

MRNet — Multicast / Reduction Network
General-purpose TBON API

0 Network: user-defined topology
O Stream: logical data channel

* to a set of back-ends

* multicast, gather, and custom
reduction

O Packet: collection of data
O Filter: stream data operator

* synchronization
* transformation

Widely adopted by HPC tools

0 CEPBA toolkit
0 Cray ATP & CCDB

0 Open|SpeedShop & CBTF
o STAT
o

o

TAU

TBON-FS : the TBON File System

Specialized TBON for
distributed file access

O back-end data sinks/sources are files

Client
libtbonfs

O simplifies tool front-end development

by providing an intuitive interface
based on POSIX I/O

O custom tool back-end functionality via

synthetic file systems loaded into
TBON-FS servers

Uses MRNet for:

O scalable unified name space TBON-FSY| . {(TBON-FS TBON-FSY . |(TBON-FS
composition Server Server Server Server

O scalable group file operations i} i}

@l
@l

ara
i’ Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ 3 inst

Group File Operations

gfd = gopen(dir, flags, mode)

Operating on Groups

O Use group file descriptor with regular file operations
(e.g., read and write)

e avoids iteration, one system call per group operation

O Semantics

* operation applied to each group member

* user-controlled aggregation of status and data results

Dyn

ara
i’ Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ 6 inst

TBON-FS: Scalable Group File Operations
Int|rc|= read(gfd, |[databuf|, 1024)

A 1\
1024xgsize(gfd) 0o
Status Aggregation . R e Data Aggregation
(sum) w1 (e (concatenate)

Scalable Distributed Process Monitoring: ptop

.n:nn___Ihujﬂpr 2d ZZ:46:20 2008

10=4 h

Task /proc/uptime /proc/loadavg 2
CEU: o /proc/stat /proc/meminfo L
Mem: g940
Awap: 17182572544k tDtal 11227968k uSEd 1711135344576k f]:EE,r 200214
TAER =CPU =MEM COMMAND
briml 1.52 [4094 0.05 [B4096 thonfs-server
El=leRs D.DD El=leRs kEsoftirgds]l
j=R= | On [desa 'I-r-:n'Ff"rqu."E
/proc/$p|d/stat mainint
[ropd,/ 0
Avg_ O/6(/proc/$pid/statm s
I =1
4096 proq /proc/$pid/status [
/ 0.0l B4lz mumged
root oL 00 H56 0.00 B5& 11 ping
root 0.00 H10z20 0.01 H1020 lrmmond
root 0.00 @752 0.00 @752 irghalance
root 0.00 BES 0.00 BES kgsimal sched
root 0.00 Eloo4d 0.00 Eloo04 1dlw cn 14
root 0.00 E1003 0.00 10058 ldlw cn 15

4,096
files

>1,000,000
files

Group Process Control & Inspection

/proc : a good starting point
O write to process/thread control file(s) to run/stop/signal
O read files containing process/thread status
O read/write process address space

O read/write thread registers

But,
O functionality differs by OS (e.g., no control on Linux)
O no notion of group operations

O always contains all host processes

yn Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ 9 inst

proc++ : Synthetic File System for Process Control

Improvements over /proc 000000000000
oJole)eoX I X X JCOIOIOXQ) MPMD
oJole)eoX I X X JCOIOIOXQ)

|. process/thread groups 000000000000

O explicit group management 000©® 0000
O directories containing members’ X 2% 0000
control and inspection files C00e® 0000
automatically created Od:/O ® (Cj) ©0 OI
. odd/even iagona
2. high-level debugger
Opel’ations /proc proc++
O breakpoints foreach(member){
0 stepping restore_insn()
step_target() run_group()
O stack walks insert bkpt()
3. platform-independent P
interface _ .
Example: Continue group from breakpoint

Dyn

ara
i’ Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ 10 inst

Proc++ : from the makers of Dyninst

Most capabilities provided by ProcControlAPI

O Cross-platform component library / C++ API
. Linux, FreeBSD, BlueGene, Windows

O Process / thread control and inspection
 Stop / continue processes, single-step threads
 Read / write process memory, thread registers
* Insert/ remove breakpoints
* Inferior remote procedure calls

* Callbacks for asynchronous event notification

Thread stack walks (StackwalkerAPI)

Dyn

ara
i’ Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ a inst

TotalView Parallel Debugger

Commercial debugger from Rogue Wave Software
O Sequential, multi-threaded, and parallel programs

O Fortran, C, C++ code from various compilers
O pthreads, OpenMP, MPI, UPC

20+ years of engineering and HPC experience
O Advanced MPI debugging

O Built-in memory debugger

O Reverse debugging (application DVR)

O Recent support for GPGPU (CUDA) code

e ———————— Dyn

Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ 12 inst

5

TotalView is a great case study

Most widely-used HPC debugger

O Lots of happy users

Known scalability limitations

O Lots of users that need it to work at full-scale on largest systems
(i.e., @ 200K+ processes)

20+ years of engineering

O A real tool that works on real applications
O Modular architecture that evolved over time

O Operations on process and thread groups are primary focus

yn Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ I3 inst

TotalView: Original Architecture

TotalView Client

Group Operation
PP User
dbgGrp = grp-getDebugGrp()
result = dbgGrp.groupOp(args) Interface
foreach(targ in grp)

targ.update(result) Layer

. Process Object
. Thread Object

. Group Object

Group Operation

foreach(targ in grp)
JEH F ¢ Debugger
tracer = targ.getTracer()
result = tracer.op(args) Layer
LY
Tracer

GG ERRG Il
PO

(@IOI©,
Dyn

ym Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ |4 inSt

TotalView Integration Challenges

Group Operations
O no group operations at (lowest) tracer level
* pushed groups down to use group file operations

O some group operations at Ul level use iteration

* added group operations at debugger level

O some group operations require process- or thread-
specific context

* extended proc++ interface and capabilities

Multi-level object maintenance

yn Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ 15 inst

TOtaIVieW: TBON-FS AI"ChiteCtU re TotalView Client

Group Operation
PP User
dbgGrp = grp-getDebugGrp()
result = dbgGrp.groupOp(args) Interface
foreach(targ in grp)

Layer

. Process Object
- Thread Object

. Group Object

targ.update(result)

Group Operation

rep = grp-getMember(0)
tracer = rep.getTracer() DEbUgger
result = tracer.groupOp(args) Layer

foreach(targ in grp)
targ.update(result)

% % Group File Operations proc++

TBON-FS

| proc++ | X[proc++)| proc++|) e ee ([proc++|X(proc++)| proc++]

Dn

ara
i’ Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ 16 ’nSt

TotalView: MRNet Architecture

TotalView Client

Group Operation
PP User
dbgGrp = grp-getDebugGrp()
result = dbgGrp.groupOp(args) Interface
foreach(targ in grp)

Layer

. Process Object
- Thread Object

. Group Object

targ.update(result)

Group Operation

rep = grp-getMember(0)
tracer = rep.getTracer() DEbUgger
result = tracer.groupOp(args) Layer

foreach(targ in grp)
targ.update(result)

% Group Tracer Operations oS
Eﬁﬁj Eﬁj ,///’///////\\\\\\\\\\\\ Tracer

MRNet

| tracer || tracer |) tracer |) e ee | tracer || tracer)| tracer |

Dn

ara
i’ Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ 17 ’nSt

Scalability: proc++ group writes

Time (seconds)

1.0

0.9 —+

0.8

—*— write attach

—

—— write singlestep

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

5 10 15 20 25 30 35
app processes (thousands)

40 45

50

Time (seconds)

0.020

0.018 —+

0.016

0.014

—*— write stop

—— write continue

—— write breakpoint /

0.012

[
T

0.010

—
%/

0.008

0.006

0.004

0.002

0.000

0

5 10 I5 20 25 30 35 40 45 50
app processes (thousands)

Scalability: proc++ group reads

4.0 0.40
—*—read addr maps —*—read regs gpr
3.5 4 ——read events / 0.35 4 —— read regs pc
3.0 0.30 /

25 0.25

2.0 0.20

Time (seconds)
i

Time (seconds)
e
n

S

0 5 10 I5 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
app processes (thousands) # app processes (thousands)

Amdahl’s Law for Scalable Tools

Speed-up from using scalable group file operations is
limited by front-end sequential behaviors

O reduce the number of objects per target
O reduce the state kept in those objects

O eliminate iterative allocation of objects

O eliminate iterative object state updates

/ index

X X
— I

Y ~
N

yn Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ 20 inst

Keys to Real Tool Scalability

“iteration is the bane of scalability”- me
O any operation requiring a linear number of steps is a show-stopper

|. Limited sequential behavior in tool front-end

2. Good group representation
* efficient creation and update = distributed group state

3. Constant or logarithmic time group operations
* parallel execution across group members

4. Constant or logarithmic size data at tool front-end

* tool internal state: O(# of groups), not O(# of targets)
* user display of group data: scalable aggregation is necessary

yn Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ 21 inst

Tool Scalability “rules to live by”

|. Single-target operations must be efficient, but
rarely used

2. On-demand data access (lazy evaluation)
* do not collect or generate data that is never used

3. Data Caching

* individual target data at tool front-end is a bad idea
" |eads to iterative cache invalidation and update
= seerule #2

* individual target data at tool back-ends is a time/space tradeoff

* group data at tool front-end is a time/space tradeoff
= caching within a TBON can limit both time and space

yn Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ 22 inst

Questions!?

Group File Operations & TBON-FS

O International Conference on High Performance Computing (HiPC
2009) Best Paper

O ftp://ftp.cs.wisc.edu/paradyn/papers/Brim09GroupFile.pdf

Scalable Composition of File System Name Spaces

O International Workshop on Runtime and Operating Systems for
Supercomputers (ROSS 201 1)

O ftp://ftp.cs.wisc.edu/paradyn/papers/Brim| | FinaINamespace.pdf

MRNet : http://www.paradyn.org/mrnet/
TBON-FS or proct++ Source Code (talk to me)

yn Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ 23 inst

TotalView Integration: proc++ Extensions

Problem: dynamic address space mappings

f \ 0x400 f \ 0x400 f \
executable executable executable
libfoo libfoo libbar
0x800 0x800
libbar libbar libfoo
- J - J - J
Rank O ceo Rank | coe Rank N

ara

Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

24

How can we do group address space write/read?

Dyn

TotalView Integration: proc++ Extensions

Solution: image files that hide dynamic mappings

0x000

Rank X

O one file for each mapped code image
O zero offset corresponds to map base of image

O to read / write symbols in image, seek to the
symbol offset

yn Improving the Scalability of the TotalView Debugger using TBON-FS and proc++ 25 inst

