
Improving the Scalability of the TotalView 
Debugger using TBONs

Michael J. Brim
Paradyn Project, University of Wisconsin

John DelSignore
Rogue Wave Software

CScADS
August 1, 2011



2Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

The Tool Scalability Problem

Key tasks:
o Application Control
o Data collection
o Data centralization/analysis

As scale increases,
front-end becomes bottleneck

FE

…… …BE

appappappapp

BE

appappappapp

BE

appappappapp

BE

appappappapp

O(10,000)

O(1,000,000)

TotalView Debugger



3Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

Tree-Based Overlay Networks (TBONs)

o Scalable multicast

o Scalable gather

o Scalable data aggregation

oNatural redundancy

FE

…… …BE

appappappapp

BE

appappappapp

BE

appappappapp

BE

appappappapp

CP CP

CP CP CP CP



4Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

MRNet – Multicast / Reduction Network
General-purpose TBON API

o Network: user-defined topology
o Stream: logical data channel

• to a set of back-ends
• multicast, gather, and custom 

reduction
o Packet: collection of data
o Filter: stream data operator

• synchronization
• transformation

Widely adopted by HPC tools
o CEPBA toolkit 
o Cray ATP & CCDB
o Open|SpeedShop & CBTF
o STAT
o TAU
o …

FE

…… …BE

appappappapp

BE

appappappapp

BE

appappappapp

BE

appappappapp

CP CP

CP CP CP CP

F(x1,…,xn)



5Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

TBON-FS : the TBON File System

Specialized TBON for 
distributed file access
o back-end data sinks/sources are files
o simplifies tool front-end development 

by providing an intuitive interface 
based on POSIX I/O

o custom tool back-end functionality via 
synthetic file systems loaded into 
TBON-FS servers

Uses MRNet for:
o scalable unified name space 

composition
o scalable group file operations

Client

…

CP CP

CP CP CP CP

libtbonfs

TBON-FS
Server

TBON-FS
Server

…TBON-FS
Server

TBON-FS
Server

FS FS FS FS



6Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

Group File Operations

gfd = gopen(dir, flags, mode)

Operating on Groups
o Use group file descriptor with regular file operations 

(e.g., read and write)
• avoids iteration, one system call per group operation

o Semantics
• operation applied to each group member
• user-controlled aggregation of status and data results



/proc/proc /proc /proc

TBON-FS: Scalable Group File Operations
int rc = read(gfd, databuf, 1024) 

TBON-FS
Server

TBON-FS
Server

TBON-FS
Server

TBON-FS
Server

TBŌN-FS Client

stat() data() stat() data()

stat() data() stat() data()

stat() data()

TBON
(MRNet)

Status Aggregation

(sum)

Data Aggregation

(concatenate)

1024×gsize(gfd)



Scalable Distributed Process Monitoring: ptop

Avg. %CPU 
4096 processes

4,096     
files

>1,000,000 
files

/proc/uptime   /proc/loadavg
/proc/stat    /proc/meminfo

/proc/$pid/stat

/proc/$pid/statm

/proc/$pid/status



9Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

Group Process Control & Inspection

/proc : a good starting point
owrite to process/thread control file(s) to run/stop/signal 
o read files containing process/thread status
o read/write process address space
o read/write thread registers

But, 
o functionality differs by OS (e.g., no control on Linux)
o no notion of group operations
o always contains all host processes



10Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

proc++ : Synthetic File System for Process Control

Improvements over /proc

1.process/thread groups
o explicit group management
o directories containing members’

control and inspection files 
automatically created

2. high-level debugger 
operations 
o breakpoints
o stepping
o stack walks

3. platform-independent 
interface

foreach(member){
restore_insn()
step_target()
insert_bkpt()
run_target()

}

run_group()

/proc proc++

Example: Continue group from breakpoint

MPMD

odd/even diagonal



11Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

proc++ : from the makers of Dyninst

Most capabilities provided by ProcControlAPI
o Cross-platform component library / C++ API

• Linux, FreeBSD, BlueGene, Windows

o Process / thread control and inspection
• Stop / continue processes, single-step threads
• Read / write process memory, thread registers
• Insert / remove breakpoints
• Inferior remote procedure calls
• Callbacks for asynchronous event notification

Thread stack walks (StackwalkerAPI)



12Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

TotalView Parallel Debugger

Commercial debugger from Rogue Wave Software
o Sequential, multi-threaded, and parallel programs
o Fortran, C, C++ code from various compilers
o pthreads, OpenMP, MPI, UPC

20+ years of engineering and HPC experience
o Advanced MPI debugging
o Built-in memory debugger
o Reverse debugging (application DVR)
o Recent support for GPGPU (CUDA) code



13Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

TotalView is a great case study

Most widely-used HPC debugger
o Lots of happy users

Known scalability limitations
o Lots of users that need it to work at full-scale on largest systems 

(i.e., @ 200K+ processes)

20+ years of engineering
o A real tool that works on real applications
o Modular architecture that evolved over time
o Operations on process and thread groups are primary focus



14Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

TotalView: Original Architecture

Process Object

Thread Object

Group Object foreach( targ in grp )
{
tracer = targ.getTracer()
result = tracer.op(args)
targ.update( result )

}

Group Operation

OS
Tracer

server server server server server server

Debugger 
Layer

User 
Interface 

Layer

dbgGrp = grp.getDebugGrp()
result = dbgGrp.groupOp(args)
foreach( targ in grp )
targ.update( result )

Group Operation

appappappapp appappappapp appappappapp appappappapp appappappapp appappappapp

TotalView Client

FE

…BE

appappappapp

BE

appappappapp

BE

appappappapp

BE

appappappapp

… …



15Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

TotalView Integration Challenges

Group Operations
o no group operations at (lowest) tracer level

• pushed groups down to use group file operations

o some group operations at UI level use iteration
• added group operations at debugger level

o some group operations require process- or thread-
specific context
• extended proc++ interface and capabilities

Multi-level object maintenance



16Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

TotalView: TBON-FS Architecture

Process Object

Thread Object

Group Object
rep = grp.getMember(0)
tracer = rep.getTracer()
result = tracer.groupOp(args)
foreach( targ in grp )
targ.update( result )

Group Operation

Debugger 
Layer

User 
Interface 

Layer

dbgGrp = grp.getDebugGrp()
result = dbgGrp.groupOp(args)
foreach( targ in grp )
targ.update( result )

Group Operation

proc++ 
Tracer

TBON-FS

proc++ proc++ proc++ proc++ proc++ proc++

appappappapp appappappapp appappappapp appappappapp appappappapp appappappapp

Group File Operations

TotalView Client



17Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

TotalView: MRNet Architecture

Process Object

Thread Object

Group Object
rep = grp.getMember(0)
tracer = rep.getTracer()
result = tracer.groupOp(args)
foreach( targ in grp )
targ.update( result )

Group Operation

Debugger 
Layer

User 
Interface 

Layer

dbgGrp = grp.getDebugGrp()
result = dbgGrp.groupOp(args)
foreach( targ in grp )
targ.update( result )

Group Operation

OS 
Tracer

MRNet

tracer tracer tracer tracer tracer tracer

appappappapp appappappapp appappappapp appappappapp appappappapp appappappapp

Group Tracer Operations

TotalView Client



Scalability: proc++ group writes

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0 5 10 15 20 25 30 35 40 45 50
# app processes (thousands)

T
im

e 
(s

ec
on

ds
)

write stop
write continue

write breakpoint

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25 30 35 40 45 50

# app processes (thousands)

T
im

e 
(s

ec
on

ds
)

write attach
write singlestep



Scalability: proc++ group reads

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 5 10 15 20 25 30 35 40 45 50

# app processes (thousands)

T
im

e 
(s

ec
on

ds
)

read regs gpr
read regs pc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 5 10 15 20 25 30 35 40 45 50

# app processes (thousands)

T
im

e 
(s

ec
on

ds
)

read addr maps
read events



20Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

Amdahl’s Law for Scalable Tools

Speed-up from using scalable group file operations is 
limited by front-end sequential behaviors

o reduce the number of objects per target
o reduce the state kept in those objects
o eliminate iterative allocation of objects
o eliminate iterative object state updates

Y

X

Y

X

N N

index



21Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

Keys to Real Tool Scalability

“iteration is the bane of scalability”- me
o any operation requiring a linear number of steps is a show-stopper

1. Limited sequential behavior in tool front-end
2.Good group representation

• efficient creation and update ⇒ distributed group state

3.Constant or logarithmic time group operations
• parallel execution across group members

4.Constant or logarithmic size data at tool front-end
• tool internal state: O(# of groups), not O(# of targets)
• user display of group data: scalable aggregation is necessary



22Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

Tool Scalability “rules to live by”

1. Single-target operations must be efficient, but 
rarely used

2. On-demand data access (lazy evaluation)
• do not collect or generate data that is never used

3. Data Caching
• individual target data at tool front-end is a bad idea

leads to iterative cache invalidation and update
see rule #2

• individual target data at tool back-ends is a time/space tradeoff
• group data at tool front-end is a time/space tradeoff

caching within a TBON can limit both time and space



23Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

Questions?

Group File Operations & TBON-FS
o International Conference on High Performance Computing (HiPC

2009) Best Paper
o ftp://ftp.cs.wisc.edu/paradyn/papers/Brim09GroupFile.pdf

Scalable Composition of File System Name Spaces
o International Workshop on Runtime and Operating Systems for 

Supercomputers (ROSS 2011)
o ftp://ftp.cs.wisc.edu/paradyn/papers/Brim11FinalNamespace.pdf

MRNet : http://www.paradyn.org/mrnet/
TBON-FS or proc++ Source Code (talk to me)



24Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

TotalView Integration: proc++ Extensions

Problem: dynamic address space mappings

How can we do group address space write/read? 

executable executable executable

Rank 0 Rank i Rank N

0x400 0x400

libfoo

libbar

libfoo

libbar libfoo

libbar
0x800 0x800



25Improving the Scalability of the TotalView Debugger using TBON-FS and proc++

TotalView Integration: proc++ Extensions

Solution: image files that hide dynamic mappings

o one file for each mapped code image
o zero offset corresponds to map base of image
o to read / write symbols in image, seek to the 

symbol offset 

executable

Rank X

0x000

libfoo libbar


