Topological Analysis of Large Scale Data:
and Practice
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Scientific Data is Only as Useful as the Results From its Analysis

Effectively analyzing scalar
functions lies at the Center
of a wide variety of
application areas




Science has Progressed From Data Poor to Data Rich Leading to

Progressively More Complex Analysis Tasks
|

= Hundreds of data points:

e Tables or simple plots =) data collection
= Thousands of data points:

e Data regression mmmmm) global trends
= Millions of data points:

e Data sub-selection mmmmmm) |Ocal trends
= Billions of data points:

e Region of interest =) feature based statistics

AN o3
L




Feature-Based Statistics Pose Several Challenges

= Feature definition:

e [ntuitive descriptions
= Feature extraction:

o Efficiency

e Accuracy

* Flexibility

Normalized Area CDF
Strong Turbulence time=150-2235
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= Feature interpretation:

o Complexity
« Stability

e Sensitivity
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Topology-Based Analysis Techniques Address Some of These
Challenges and Enable New Capabilities

e Threshold-based features
e Gradient-based features
= Efficient, combinatorial algorithms:
e Generic collection of streaming and/or parallel algorithms
e Provably correct algorithms and guaranteed error bounds
e Exact representation of mathematical concepts
= Multi-scale analysis framework with flexible post-processing
 In-build hierarchical structure with variable simplification metrics
e Single-pass analysis leading to higher level meta-representations
e Flexible post-processing of meta-representations enables:

— parameter selection
— sensitivity analysis

AN o)
Vo)




We Have Extended Morse Theory to Analyze the Topology of
Discrete Scalar Functions

= Level set-based: Reeb graphs, contour trees, etc. | | <.
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Ultra Clean, Low Swirl Combustion Which Promises Significant

Advances in Energy Production Technology
|

= Low swirl burners produce a stable lifted flame that:
e Burns more fuel efficient;
* Produces fewer emissions; and
e Does not interact with the burner.




Low Swirl, Fuel Lean Flames Burn in a Chaotic, Quasi-Steady
Cellular Mode That Defies Traditional Analysis Techniques
]
= There exists not connected interface separating fuel from the
products.
= No notion of a “progress variable” to analyze the dynamics
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Simulations of Laboratory-Scale Flames are Used to Augment and

Validate Experimental Diagnostics
|

= Simulations allow to:
o Better interpret diagnostics
 Form and test new hypothesis
e Aid in develop new salient models
= We are analyzing two sets of AMR-based simulations of lean,
pre-mixed hydrogen flames
e Three idealized flames at different levels of turbulence
- 621, 540, and 427 time steps
— Simulated at effective resolution 512x512x1536
— 400 GB compressed floating point data
* Two device scale simulation that differ in flow speed and turbulence
- 332 and 284 time steps, respectively
— Simulated at effective resolution 2048”3, saved at 1024/3.
- 12-16 GB per time step, combined 8.4 TB of raw data
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The Features of Primary Interest are Burning Cells Defined via

Thresholds of the Local Fuel Consumption
|

= Scientists characterize the combustion process via burning
cells defined as regions of high fuel consumption:

 How many cells exist at a given time ?
 What are their sizes ?
 What are their integral properties, e.g. average temperature ?
 What is their evolution over time ?
= There exists no pre-set threshold on the fuel consumption and

analyzing the data with various thresholds provides important
information:

 How does each of the characteristics change as the threshold
changes ?

* Are there stable thresholds indicating more salient properties ?




Threshold-Based Features can be Encoded Independent of the
Threshold Using Level Set Based Graphs or Trees
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Merge Trees are Ideally Suited to Encode Super-Level Sets:
Features Defined as Areas Greater Than a Threshold
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Merge Trees are Ideally Suited to Encode Super-Level Sets:
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Exploiting the Corresponding Segmentation Merge Trees can
Store any Number of Feature Attributes

* segmentation

* volume

e average temperature
- efc.
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Cutting a Merge Tree Represents Segmentations at Different
Thresholds by Treating Combining Sub-Trees
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Cutting a Merge Tree Represents Segmentations at Different
Thresholds by Treating Combining Sub-Trees




Feature Attributes of the Current Segmentation are Reconstructed
Through the Merging of Branches

(#v=100, T=1200K)

e ®
(#v=150, T=1250K)

4//

(#v=250, T=1225k)

—  _ose



Feature Attributes of the Current Segmentation are Reconstructed
Through the Merging of Branches

(#v=500, T=1227.5K)




Surface-Based Analysis of Lean, Pre-Mixed Hydrogen in Idealized
Conditions Under Different Levels of Turbulence
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Hierarchical Merge Trees Enable Extensive Parameter

Studies in a Single Analysis Path
|

Number of Cells vs. Fuel Consumption
Strong Turbulence

Normalized Area CDF
Strong Turbulence time=150-2235
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The Analysis Reveals New Scientific Insight Into the Influence of
Turbulence on the Combustion Process

Magnitude of hydrogen consumption

L

e== High slope = no turbulence

e== Mid slope = weak turbulence

© 00 0=
ON NO ®O

Normalized
cumulative area

e Low slope = strong turbulence

CASC

Cell size » Large




Side-by-Side Comparison on Experimental Methane Flame
vs. Burning Regions of a Simulated Hydrogen Flame

_CASC



Device-Scale Low-Swirl Turbulent Combustion




Inter-Simulation Comparison
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The One-Parameter Family of Segmentations Provides
Unprecedented Analysis Capabilities

Weighted Area CDF Skewness
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Overlap-Based Tracking Enables Us to Robustly Track All Cells
Through All Time Steps
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Recently we have Developed Techniques for On-The-Fly Tracking

Producing Dynamic Graph Layouts of Massive Graphs
|

Segmentation Tracking Graph

File  View
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Demo
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High-Dimensional Data Represents a Growing Challenge for
Visualization and Data Analysis

= High dimensional functions represent an increasingly important
type of data

* High dimensional PDF’s, i.e. conditional analysis
e Sensitivity analysis
e Uncertainty quantification
* Material phase space
= Current analysis tools are still limited and often unintuitive
e Scatter plots
e Parallel coordinates
e Dimension reduction
e Clustering

= High-dimensional topological segmentations can provide new
opportunities for analysis and new visual metaphors

CASC

-



The High-Dimensional MS Complex Provides a Topological
Segmentation Leading to New Analysis and Visualization Techniques

= The Morse-Smale complex encodes the topology of an input
function with all extrema and the monotone cells between them
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Exploration of High Dimensional Functions for Sensitivity
Analysis

Integrated presentation of statistics and topology
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Topological Analysis Reveals Some Interesting Relationship
Between Shallow/Deep Convection and Global Long Wave Flux

= The clear sky global long wave flux is maximal in

two distinct

parameter regimes something not evident through standard analysis

Inverse regression of
tau/cmftau wrt. cell 1
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The Same Information is Not Apparent in Either BIC Selection
or Standard Regression
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Topological Analysis Reveals Some Interesting Relationship
Between Shallow/Deep Convection and Global Long Wave Flux

= The clear sky global long wave flux is maximal in

two distinct

parameter regimes something not evident through standard analysis

Inverse regression of
tau/cmftau wrt. cell 1

00
00

“XA \ . 1.00
‘7 7: _ won )
| ool | S—
- / |- —
i ,%;,./,,,_,,_,G fl au
0.

topology ot FLUTC
projected into 2D

Inverse regression of
tau/cmftau wrt. cell 2

_CASC



