h [JNM SCHOOL of ENGINEERING /\
Department of Computer Science Sca | ad b I e SySte Mms EM

LIBI: The Lightweight
Infrastructure-Bootstrapping
Infrastructure

Joshua Goehner & Dorian Arnold

University of New Mexico

Infrastructure-bootstrapping

Given an infrastructure’s binary image(s) and a process/host
distribution, start all relevant processes on their respective
hosts and propagate necessary startup information.

» Before bootstrapping:
o Program image on storage device
o Set of (allocated) computer nodes

» After bootstrapping:
« Application processes started on computer nodes

- Application’s configuration complete
ready for primary operation

~

Scalable Systems (3527

What Infrastructures Need
Bootstrapping?

» They all do! Every piece of distributed software needs
to be instantiated at some point
o Applications
o Tools
o System services

I”

“| gotta get my application up and running

(1) “First, | start all the processes on the appropriate nodes”

2) “Next, | must disseminate some initialization information”

T\

OOOO
@

OO O

({)] © © ©

Bootstrapping is complete when the
infrastructure is ready for steady-state usage.

OO0

Bootstrapping Operations

» Process Launching

» Information Dissemination

E Scalable Systems [a:7

Bulk Launching Alternatives

» All Strategies Employ Daemons

o Service daemons or node level agents to start application
processes

» Strategies vary along two dimensions
o Degree of daemon persistence
* service infrastructure = more persistent
« application specific = less persistent
c Daemon interconnection topology
* simple = less scalabilty
* hierarchical =» more scalability

Degree of (daemon) Persistence

» Persistent daemons, persistent connections
o MPD

» Persistent daemons, transient connections
o SLURM, ALPS

» Transient daemons, transient connections
o Scela, MRNet default, MRNet on XT

(Daemon) Interconnection Hierarchy

» Centralized
» Rings

» Trees

Scalable Bootstrapping Alternatives

» Infrastructure-specific, scalable mechanisms
o Still limited by sequential operations

o Not portable to other infrastructures

» Using high-performance resource managers
o Myriad interfaces

o No communication facilities

» Generic bootstrapping infrastructures

o LaunchMON: targets tools with wrapper for existing RMs

LIBI Approach

» LIBI: Lightweight infrastructure- Large Scale Distributed Software
bootstrapping infrastructure Debuggers System Monitors
Applications
Performance Analyzers Overlay Networks

o Generic service for scalable
distributed software infrastructure
bootstrapping

LaunchMON
* Process launch i

LIBI

Job Launchers Communication
SLURM Services
« Scalable, low-level collectives OpenRTE COBO
rsh/ssh
ALPS MPI

Members

LIBI Architecture
Front End

LIBI API

» session: set of processes (to be) deployed

o session master manages other members

o session front-end interacts with session master

o LIBI currently supports only master/member communication
» host-distribution: where to create processes

° <hostname, NUM-processes>

» process distribution: how/where to create processes

o <session-id, executable, arguments, host-distribution,
environment>

LIBI API (cont’d)

launch (process-distribution-array)

o jnstantiate processes according to input distributions

[send|recv]UsrData (session-1id, msqg)

o communicate between front-end and session master

broadcast (), scatter (), gather (), barrier ()

o communicate amongst session members

Example LIBI Front-end

front-end() {
LIBI fe init();
LIBI fe createSession(sess);

proc_dist req t pd;
pd.sessionHandle = sess;
pd.proc_path = get ExePath();
pd.proc_argv = get ProgArgs();
pd.hd = get HostDistribution();

LIBI fe launch(pd);

//test broadcast and barrier
LIBI fe sendUsrData(sessl, msg, len);
LIBI fe recvUsrData(sessl, msg, len);

//test scatter and gather
LIBI fe sendUsrData(sessl, msg, len);
LIBI fe recvUsrData(sessl, msg, len);

return 0;

N

~

Scalable Systems [a5:7

N

Example LIBI-launched Application

session_member () {
LIBI init();

//test broadcast and barrier

LIBI recvUsrData(msg, msg_length) ;
LIBI broadcast(msg, msg _length);
LIBI barrier();
LIBI_sendUsrData(msg, msg_length)

//test scatter and gather

LIBI recvUsrData(msg, msg length);

LIBI scatter (msg, sizeof(rcvmsg), rcvmsg);
LIBI gather (sndmsg, sizeof (sndmsg), msg);
LIBI sendUsrData(msg, msg_length) ;

LIBI finalize();

LIBI Implementation Status

» LaunchMON-based runtime Large Scale Distributed Software
Debuggers System Monitors
. Applications
o Tested SLURM or rsh launching
Performance Analyzers Overlay Networks
LIBI

o COBO PMGR service

» Rsh-based default

Job Launchers Communication

o Pluggable launch topologies Services
OpenRTE
o Devised a provably optimal algorithm! ALPS MPI

Optimal Launching Topology

» Assumptions
o Homogenous computing environment
 All nodes have the same computational power
+ Constant wait time between each local launch command

« Constant remote launch time
 physical network topology?
+ file system (and other resource) contention?

» Algorithm Overview
o |nspired by Park et al’s optimal multicast tree [ICPP ‘96]
o Pick first node as root
o For every subsequent node, place at minimal launch point

Algorithm for Optimal Launch Topology

find optimal topology(node list, model params) {
dequeue list head, set as root of tree

compute root’s Y“ready time”

while (node list not empty) {

dequeue list head

add node to tree at smallest “ready time” node
compute node’s “ready time”

recompute parent’s “ready time”

Performance Results

» Focus on task launching
o Lots of data available for communication topologies

» MRNet Start-up improvements

LIBI Microbenchmark Results

20 :;41 ———————————
A
wis oo
(<)
E
- T
= 10
=
= "
8. L e .

-#-||Bl —*-Sequential
0 I I I I I I 1

0 500 1000 1500 2000 2500 3000 3500

Number of Processes

LIBI Microbenchmark Results

o
o
a1

o
(@)
=

o
(@)
@

0.02

0.01

Commuunication TIme (sec)

=#—LIBI Broadcast/Barrier

=>LIBI Scatter/Gather

=—Seq. Broadcast/Barrier
Seq. Scatter/Gather

0 500 1000 1500 2000 2500 3000

Number of Processes

MRNet/LIBI Integration

» MRNet uses LIBI to launch all MRNet processes

o Parse topology file and setup/call LIBT launch ()

» Session front-end gathers/scatters startup information

o Parent listening socket (IP/port)

MRNet Sequential-ish Bootstrapping

» Parent creates children

» Local = fork()/exec()

/’ \\
PAERNRN
-7 0 LSRN
- ’ \ RN
-7 7 \ S<
P ’ \ SS
-7 ’ \ o
-7 4 N S
/’ 4 \ \\
- / \ <~
-7 7 \ ~o
- ’ \ S
» Remote =» rsh-based -~ : - >
- - <
Int ted instantiati d
» Integrated INStantiation an g 3 " 0
" 7" 7 ”"
N 71 7 2N
RN s s R
sy s R R
A AV ropoa R
R U S \ S \ EANER TN
’
1 1 \ 1 1 \ 1 1 \ / 1 1 \
A
[
’ \
\ ’ ! ! \
\
\

information propagation

’ ! d \ ’ ! ! \ / 1 1
,] 1 \ / 1 1 \ , 1 \
II I’ || ‘\ II l’ I| ‘\ II ll \
V4 o V24
» MRNet’s “standard ((

Launch Time

i —Sequential /
R —Skewed Y _{ _____________________________________
' —Chain Y
—2-ary Tree / _
S Y ——8-aryTree /s J ===
——32-ary Tree / ——
14 - — -Series8 e S
-/
-
12 T e
// //
L <
/ / —
08 +-—/-fr———————1 D S i
/ -—'—':"_':=_'—_==__===y--—-‘-"'-g
0.6 '__/ _____-_-_:- ____: __________ — 4::_____________:_____:_-___:_:_________'
= — ————— T
0.4 ————: ———
0.2
0
0 50 100 150 200 250 300 350

Node Count

400

LIBI v.s. MRNet default

140

MRNet Bootstrap Time (seconds)
. ~ o 00 5 o
o o o o o o

o

—

——Current MRNet

-®-MRNet over LIBI

o

10 15 20 25 30
MRNet Fanout

35

Time (seconds)

LIBI v.s. MRNet default (broken down)

¥ MRNet TBON Formation
100 +— e M LIBI Communication
M LIBI Launch
™ Preparation for LIBI
80
60 -
40 - .- R
20 1 - .- R
0

2 3 MRNet Fanout 16

32

Future Research and Development

>

Optimal Launch Topology

o Performance analysis

o Scalability bounds

o Optimization heuristics

o Impact of resource contention and other simplifications
Mechanisms to alleviate file system contention

o Like our scalable binary relocation service

More flexible process and host distributions

o |nstantiating different images in same session

o Integrating allocating and launching

Integrated scalable communication infrastructure

Refactoring LaunchMON

