

CScADS Workshop on Performance Tools for Petascale Systems Analysis and Presentation

Working Group Notes

Working Group Members

- Jim Brandt
- Brad Chen
- Luiz DeRose
- Bronis de Supinski
- Stephane Eranian
- Robert Fowler
- James Galarowicz
- Marty Itzkowitz
- Karen Karavanic
- Jesus Labarta

- Allen Malony
- John McCalpin
- Philip Roth
- Martin Schulz
- Seetharami Seelam
- Sameer Shende
- Dan Terpstra
- Jeffrey Vetter
- Felix Wolf

What to display?

- Driven by analysis goals?
- Driven by available data?
- Driven by user category?
 - domain scientist vs. analyst

Single Node Performance

- Capture metrics associated with code locations
 - source
 - executable
- Attribution to context
- Ex compiler output valuable information about what transformations have occurred
 - attributing costs back to source level constructs
 - correct instruction (e.g. vs. following instruction)
 - how to meaningfully present the result?
 - still useful if tool user isn't familiar with the code?
- Counters including measurements in user space

Application Abstractions

- Models
- Algorithms
- Expected behavior

Data Format Alternatives

- XML
- Raw data for max flexibility and model development

Barriers to Tool Adoption 1

- Ease of Use
 - so many options, how to choose best display for the task?
 - tool as swiss army knife with 18 specialized blades
- Users may not trust the tool answer
 - users unfamiliar with underlying measurement techniques/limits
 - users unfamiliar with statistical methods, how to interpret output?
- Users need to know the answer to choose the best approach
 - better for tool to pick or at least focus choices or suggest
 - user's initial guess may be wrong
- Tools don't include knowledge of application the developer has algorithm etc
- Perspective: analysis probably won't improve performance
 - performance "good enough"
 - problem is the underlying machine app is doing best possible

Barriers to Tool Adoption 2

- Hybrid machine -> load imbalance
- Machine "upgrade" -> drop in performance
 - performance vs scaling
- Users can't do cost/benefit analysis up front
 - cost of analysis?
 - potential gain?
 - will improving performance benefit app developer/user?
 - analysis may be more valuable to system purchasers, designers of next generation machines, operators, researchers
 - better to get high level answer first to decide to analyze more closely
- Provide automatic "high level report card"
 - one approach: don't charge runs to user if monitoring tool used
 - ignorance
 - what tools are available?
 - what might they show?

Barriers to Tool Adoption 3

- Security / access issues
 - "need to know"
 - app developers/analysts may hold different levels of clearance
 - may rule out continuous system monitoring or mandatory measurement
 - tool developers need full scale measurement data
- Production scale runs are expensive
 - management must be convinced of the potential benefit of performance tuning applications (2% overhead to monitor vs ??)
 - only way to find some problems small scale tests miss things

Methods for Analysis

- Anomaly detection
- Dimension reduction
- Comparative Analysis (cf to previous runs; models; expected behavior)
 - requires a data store for historical knowledge
- Multiple experiments --> a single execution view
- Clustering
- Principal component analysis
- Pattern identification
 - difficulties for pattern analysis
 - patterns can arise from superposition of phenomena
 - determining the reason for patterns is hard
 - especially with respect to temporal data
 - phase identification to reduce data size
 - multi-scale pattern analysis
 - bottom up and top down
 - potential role for simulation?
 - what if analysis (if pattern were different)

Strategies for Monitoring and Analysis

- Continuous System level monitoring (eg NWPerf @PNNL)
- Parallel data analysis methods e.g. SCALASCA

Methods for Scalable Display 1

Data Reduction

- can't show all the data anymore even at terascale
- tracefile size constraints
- analysis must occur before display
- anomaly detection
- Large multi-dimensional parameter space
- Integrating historical data into display
- Thumbs up/thumbs down
 - very short answer from automated approach
- Common interfaces
 - component reuse between tools
 - Eclipse?
 - "Eclipse aware" more flexible than requiring Eclipse
 - well defined formats for input/output data

Methods for Scalable Display 2

- Maximizing portability
 - use of file system: ability to output tool results to files
 - Java, QT, SWT, ...
 - support for multiple DBMSs
- New techniques to take advantage of large performance database archives?
- Minimizing data movement
 - client/server approach
 - just in time data delivery
- Using data visualization tools developed for app data
 - analogy to car performance display
 - click on component, get detailed info