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266 COMPUTING APPLICATIONS

PARALLEL LANGUAGES AND 
COMPILERS: PERSPECTIVE FROM 
THE TITANIUM EXPERIENCE

K. Yelick1,2

P. Hilfinger1

S. Graham1

D. Bonachea1

J. Su1

A. Kamil1

K. Datta1

P. Colella2

T. Wen2

Abstract

We describe the rationale behind the design of key fea-
tures of Titanium—an explicitly parallel dialect of Java for
high-performance scientific programming—and our expe-
riences in building applications with the language. Specif-
ically, we address Titanium’s partitioned global address
space model, single program multiple data parallelism sup-
port, multi-dimensional arrays and array-index calculus,
memory management, immutable classes (class-like types
that are value types rather than reference types), operator
overloading, and generic programming. We provide an
overview of the Titanium compiler implementation, cover-
ing various parallel analyses and optimizations, Titanium
runtime technology and the GASNet network communica-
tion layer. We summarize results and lessons learned from
implementing the NAS parallel benchmarks, elliptic and
hyperbolic solvers using adaptive mesh refinement, and
several applications of the immersed boundary method.
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1 Introduction

Titanium is an explicitly parallel dialect of Java designed
for high-performance scientific programming (Yelick et al.
1998). The Titanium project started in 1995, at a time when
custom supercomputers were losing market share to PC
clusters. The motivation was to create a language design
and implementation enabling portable programming for a
wide range of parallel platforms that strikes an appropri-
ate balance between expressiveness, user-provided infor-
mation about concurrency and memory locality, and
compiler and runtime support for parallelism. Our goal
was to design a language that could be used for high per-
formance on some of the most challenging applications,
such as those with adaptivity in time and space, unpre-
dictable dependencies, and sparse, hierarchical, or pointer-
based data structures.

The strategy we used was to build on the experience of
several global address space languages, including Split-C
(Culler et al. 1993), CC++ (Kesselman 1996), and AC
(Carlson and Draper 1995), but to design a higher-level
language offering object-orientation with strong typing
and safe memory management in the context of applica-
tions requiring high-performance and scalable parallelism.
Although Titanium initially used C++ as a base language,
there were several reasons why there was an early deci-
sion to design Titanium as a dialect of Java instead. Rela-
tive to C++, Java is a semantically simpler and cleaner
language, making it easier to extend. Also, Java is a type-
safe language, which protects programmers from the
obscure errors that can result from violations of unchecked
runtime constraints. Type-safety enables users to write
more robust programs and the compiler to perform better
optimizations. Java has also become a popular teaching
language, providing a growing community of users for
whom the basics of Titanium should be easy to master.

The standard Java language alone is insufficient for large-
scale scientific programming. Its multi-dimensional array
support makes heavy use of pointers, and is fundamen-
tally asymmetric in its treatment of the dimensions. Its
memory model is completely flat, making no provision
for distributed or otherwise hierarchical memories. Its multi-
processing support does not distinguish “logical threads,”
used as program-structuring devices and intended to oper-
ate sequentially, from “process-like threads,” intended to
represent opportunities for concurrency. This conflation
impacts static program analysis required by some optimi-
zations.
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267PARALLEL LANGUAGES AND COMPILERS

It is possible to approach these deficiencies either through
language extensions or library extensions. The former
choice allows more concise and user-friendly syntax, and
makes more information explicitly available to the com-
piler. The latter choice would perforce be more portable.
However, it was clear that in either case, we would have
to modify or build a compiler to get the necessary per-
formance, and that while the library-only approach would
be portable in a purely functional sense, it would make
portability of application performance more problematic.
For these reasons, we chose to introduce a new dialect.
We argue that parallel languages like Titanium provide
greater expressive power than conventional approaches,
enabling much more concise and expressive code and
minimizing time to solution without sacrificing parallel
performance.

In the remainder of the paper, we present highlights of
the design of the Titanium language, our experiences using
it for scientific applications, and compilation and runtime
innovations that support efficient execution on sequential
and parallel platforms.

2 Serial Extensions to Java

We added several features to Java to better support scien-
tific computation and high single-processor performance.
In this section we illustrate these features, drawing on exam-
ples taken from our implementations of the three NAS
parallel benchmarks (Bailey et al. 1991; Datta, Bonachea,
and Yelick 2005): Conjugate Gradient (CG), 3-D Fast Fou-
rier Transform (FT), and Multigrid (MG). These bench-
marks, like most scientific applications, rely heavily on
multi-dimensional arrays as their primary data structures:
CG uses simple 1-D arrays to represent vectors and a set
of 1-D arrays to represent a sparse matrix, while both MG
and FT use 3-D arrays to represent a discretization of
physical space. These NAS benchmarks are sufficient
for illustrating Titanium features, but some of the language
generality was motivated by more complicated parallel
computations, such as adaptive mesh refinement (Wen
and Colella 2005) and immersed boundary method simu-
lation (Peskin 2002), which are more extensive applica-
tions that are described in Section 6.

2.1 Titanium Arrays

In Java, all arrays inherit from Object and only 1-D
arrays are fully supported. All arrays have a starting index
of zero, and there is no support for sub-arrays to share
state with larger arrays. Multi-dimensional arrays in Java
are represented as arrays of arrays. While this approach is
general, it incurs performance penalties from the extra
level of indirection, the memory layout, and the added com-
plexity of compiler analysis. Therefore, iterating through

any array with dimensionality greater than one is likely
to be slow. Since MG, FT, and AMR all require 3-D
arrays, these applications would not be likely to perform
well in standard Java, without converting all the arrays
into 1-D arrays and using tedious manual indexing calcu-
lations to emulate multi-dimensionality.

Titanium extends Java with a powerful multi-dimensional
array abstraction, which provides the same kinds of sub-
array operations available in Fortran 90. Titanium arrays
are indexed by integer tuples known as points and built on
sets of points, called domains. The design is taken from
that of FIDIL (Hilfinger and Colella 1989). Points and
domains are first-class entities in Titanium—they can be
stored in data structures, specified as literals, passed as
values to methods and manipulated using their own set of
operations. For example, the smallest standard input (class
A) to the NAS MG benchmark requires a 2563 grid. The
problem has periodic boundaries, which are implemented
using a one-deep layer of surrounding ghost cells, resulting
in a 2583 grid. Such a grid can be constructed with the fol-
lowing declaration:

double [3d] gridA = new double 
[[-1,-1,-1]:[256,256,256]];

The 3-D Titanium array gridA has a rectangular index
set that consists of all points [i, j, k] with integer coordi-
nates such that –1  i, j, k  256. Titanium calls such an
index set a rectangular domain of Titanium type Rect-
Domain, since all the points lie within a rectangular box.
Titanium also has a type Domain that represents an arbi-
trary set of points, but Titanium arrays can only be built
over RectDomains (i.e. rectangular sets of points).
Titanium arrays may start at an arbitrary base point, as
the example with a [–1, –1, –1] base shows. Program-
mers familiar with C or Fortran arrays are free to choose
0-based or 1-based arrays, depending on personal prefer-
ence and the problem at hand. In this example the grid
was designed to have space for ghost regions, which are
all the points that have either –1 or 256 as a coordinate.
On machines with distributed memory systems, gridA
resides in memory with affinity to exactly one process,
namely the process that executes the above statement.
Similarly, objects reside in a single logical memory space
for their entire lifetime (there is no transparent migra-
tion of data), however they are accessible from any proc-
ess in the parallel program, as will be described in
Section 3.2.

2.2 Domain Calculus

The true power of Titanium arrays stems from array oper-
ators that can be used to create alternative views of an
array’s data, all without an implied copy of the data.

≤ ≤
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268 COMPUTING APPLICATIONS

While this is useful in many scientific codes, it is espe-
cially valuable in hierarchical grid algorithms like Multi-
grid and adaptive mesh refinement (AMR). In a Multigrid
computation on a regular mesh, there is a set of grids at
various levels of refinement, and the primary computa-
tions involve sweeping over a given level of the mesh per-
forming nearest neighbor computations (called stencils)
on each point. To simplify programming, it is common to
separate the interior computation from computation at the
boundary of the mesh, whether those boundaries come
from partitioning the mesh for parallelism or from special
cases used at the physical edges of the computational
domain. Since these algorithms typically deal with many
kinds of boundary operations, the ability to name and
operate on sub-arrays is useful. Java does not handle such
applications well, because of its non-contiguous memory
layout and lack of sub-array support. Even C and C++ do
not support sub-arrays well, and hand-coding in a 1-D array
can often confuse the compiler.

Titanium’s domain calculus operators support sub-arrays
both syntactically and from a performance standpoint. The
tedious business of index calculations and array offsets
has been migrated from the application code to the compiler
and runtime system. For example, the following Titanium
code creates two blocks that are logically adjacent, with a
boundary of ghost cells around each to hold values from
the adjacent block. The shrink operation creates a view
of gridA by shrinking its domain on all sides, but does
not copy any of its elements. Thus, gridAInterior
will have indices from [0,0,0] to [255,255,255]
and will share corresponding elements with gridA. The
copy operation in the last line updates one plane of the
ghost region in gridB by copying only those elements in
the intersection of the two arrays. Operations on Titanium
arrays such as copy are not opaque method calls to the
Titanium compiler. The compiler recognizes and treats
such operations specially, and thus can apply optimiza-
tions to them, such as turning blocking operations into
non-blocking ones.

double [3d] gridA = new double 
    [[-1,-1,-1]:[256,256,256]];
double [3d] gridB = new double 
    [[-1,-1,256]:[256,256,512]];

/**/ define interior for use stencil code
double [3d] gridAInterior =
     gridA.shrink(1);

/**/ update overlapping ghost cells from 
     neighboring block. 
/**/ gridB is the destination array, and 
     gridAInterior is the source array
     gridB.copy(gridAInterior);

The above example appears in the NAS MG implemen-
tation in Titanium (Datta et al. 2005), except that gridA
and gridB are themselves elements of a higher level
array structure. The copy operation as it appears here
performs contiguous or discontiguous memory copies,
and may perform interprocessor communication when the
two grids reside in different processor memory spaces
(see Section 4.2). The use of a global index space across
distinct array objects (made possible by the arbitrary index
bounds of Titanium arrays) makes it easy to select and
copy the cells in the ghost region, and is also used in the
more general case of adaptive meshes.

To implement periodic boundaries, one views an array
as having been shifted in space, e.g. a block at the left-
most end will be viewed as adjacent to the right-most.
Titanium provides the translate operation for such
index space shifts.

/**/ update neighbor’s overlapping ghost 
     cells across periodic boundary
/**/ by logically shifting the gridA to 
     across the domain of gridB
gridB.copy(gridAInterior.translate
     ([0,0,256]));

The translate method shifts the indices of the array
view by logically adding the given point to every index in
the array, creating a new view of gridAInterior where
the relevant points overlap their boundary cells in gridB.
The translate operation involves only construction of
new array metadata (no data element movement), while
the explicit copy operation performs the more expensive
element copies. This separation helps to make the per-
formance of the code transparent to programmers.

The ability to specify points as named constants can be
used to write stencil operations such as those found in the
NAS MG benchmark. The following code applies a 5-
point 2-D stencil to each point p in gridAInterior’s
domain, where gridAInterior denotes the interior
(non-boundary) portion of a grid for which the neighbor-
ing points are all defined. The results are written into
another grid, gridANew, whose domain contains the
same set of points as gridA. S0 and S1 are scalar con-
stants determined by the specific stencil operator.

final Point<2> EAST =  [ 1, 0];
final Point<2> WEST =  [-1, 0];
final Point<2> NORTH = [ 0, 1];
final Point<2> SOUTH = [ 0,-1];
double [3d] gridANew = 
    new double [gridA.domain()];

foreach (p in gridAInterior.domain()) {
    gridANew[p] = S0 * gridAInterior[p] 

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at RICE UNIV on November 5, 2007 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com
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      + S1 * ( gridAInterior[p + EAST ] +
               gridAInterior[p + WEST ] +
               gridAInterior[p + NORTH] +
               gridAInterior[p + SOUTH] );
}

The full NAS MG code used for benchmarking in Sec-
tion 6.4 includes a 27-point stencil applied to 3-D arrays.
The Titanium code, like the NAS Fortran version of this
benchmark, uses a manually-applied stencil optimization
that eliminates redundant common subexpressions (Cham-
berlain, Deitz, and Snyder 2000). The foreach construct
is explained in the next section.

2.3 Foreach Loops

Titanium provides an unordered looping construct, foreach,
specifically designed for iterating through a multi-dimen-
sional space. In the foreach loop below, the point p plays
the role of a loop index variable. (The stencil operation
above has been abstracted as a method applyStencil).

foreach (p in gridAInterior.domain()) {
    gridB[p] = applyStencil
      (gridAInterior, p);
}

The applyStencil method may safely refer to elements
that are 1 point away from p, since the loop is over the
interior of a larger array.

This one loop concisely expresses an iteration over a
multi-dimensional domain that would correspond to a
multi-level loop nest in other languages. A common class
of loop bounds and indexing errors is avoided by having
the compiler and runtime system automatically manage the
iteration boundaries for the multi-dimensional traversal.
The foreach loop is a purely serial iteration construct—it
is not a data-parallel construct.

In addition, if the order of loop execution is irrelevant
to a computation, then using a foreach loop to traverse
the points in a RectDomain explicitly allows the com-
piler to reorder loop iterations to maximize performance
– for instance, by performing automatic cache blocking
and tiling optimizations (Pike 2002; Pike and Hilfinger
2002). It also simplifies bounds-checking elimination and
array access strength-reduction optimizations.

3 Models of Parallelism

Designing parallelism facilities for a programming lan-
guage involves a number of related decisions:

• Is parallelism expressed explicitly or implicitly?
• Is the degree of parallelism static or dynamic?

• How do the individual processes interact—how do they
communicate data and synchronize with each other?

Answers to the first two questions have tended to group
languages into principal categories: data-parallel, task-
parallel, and single program multiple data (SPMD). Answers
to the last question groups languages into message pass-
ing, shared memory, or partitioned global address space
(PGAS). Here, we define these terms as used in this paper
and explain the rationale behind our decision to use a
SPMD control model and PGAS memory model in Tita-
nium.

3.1 Creating Parallelism

3.1.1 Data parallelism Data-parallel languages such
as ZPL, NESL, HPF, HPJava, and pC++ are popular as
research languages because of their semantic simplicity:
the degree of parallelism is determined by the data structures
in the program, and need not be expressed directly by the
user (Lee et al. n.d.; Bodin et al. 1993; Blelloch 1995;
High Performance Fortran Forum 1997; Snyder 1999).
These languages include array operators for element-wise
arithmetic operations, e.g. C = A+B for matrix addition,
as well as reduction and scan operations to compute values
such as sums over arrays. In their purest form, data-parallel
languages are implicitly parallel, so their semantics can be
defined serially: assignment statements are defined by
evaluation of the entire right-hand side before any modi-
fications to left-hand side variables are performed and
there are implicit barriers between statements.

The semantic simplicity of data-parallel languages is
attractive, yet these languages are not widely used in practice
today. While the factors in language success involve com-
plex market and sociological factors, there are two techni-
cal problems that have limited the success of data-parallel
languages as well: 1) They are not expressive enough for
some of the most irregular parallel algorithms; 2) They rely
on fairly sophisticated compiler and runtime support that
takes control away from application programmers. We
describe each of these issues in more detail and how solu-
tions to address the first tend to trade off against the sec-
ond.

The purely data-parallel model is fundamentally lim-
ited to performing identical operations in parallel, which
makes computations like divide-and-conquer parallelism
or adaptivity challenging at best. NESL generalizes the
model to include nested parallelism, but complex depend-
ence patterns such as those arising in parallel discrete-
event simulation or sparse matrix factorization algorithms
are still difficult to express. HPF goes even further by add-
ing the INDEPENDENT keyword, which can be used for
general (not just data-parallel) computation, and HPJava
includes a library for making MPI calls. This reflects the
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tension between the elegance of pure data-parallelism and
the application needs for more generality.

The second challenge for data-parallel languages is that
the logical level of parallelism in the application is likely
many times larger than the physical parallelism available
on the machine. This is an advantage for users, since they
need only express the parallelism that is natural in their
problem, but it places an enormous burden on compiler
and runtime system to handle resource management. On
massively parallel SIMD machines of the past, the mapping
of data parallelism to processors was straightforward, but
on modern machines built from heavyweight processors
(either general-purpose microprocessors or vector proces-
sors), the compiler and runtime system must map the fine-
grained parallelism onto coarse-grained machines. HPF
and ZPL both provide data-layout primitives so that the
user can control the mapping of data to processors, but the
decomposition of parallel work must still be derived by
the language implementation from these layout expres-
sions. This work-decomposition problem has proven to
be quite challenging for complex data layouts or for the
case when multiple arrays with different distributions are
involved.

3.1.2 Task parallelism At the opposite extreme from
data-parallel languages are task-parallel languages, which
allow users to dynamically create parallelism for arbitrary
computations. Task-parallel systems include the Java
thread model as well as languages extended with OpenMP
annotation or threading libraries such as POSIX threads
(OpenMp n.d.; IEEE and The Open Group 2004). Parallel
object-oriented languages such as Charm++ and CC++
have a form of task parallelism in which method invoca-
tion logically results in the creation of a separate process
to run the method body (Kesselman 1996; Kale, Hills, and
Huang 2004). These models allow programmers to express
parallelism between arbitrary sequential processes1, so they
can be used for the most complicated sorts of parallel
dependence patterns, but still lack direct user control over
parallel resources. The parallelism unfolds at runtime, so
it is normally the responsibility of the runtime system to
control the mapping of processes to processors.

3.1.3 Static SPMD parallelism The single program
multiple data (SPMD) model is a static parallelism model
[popularized by systems such as MPI (MPI Forum 1995)
and SHMEM (n.d.)] in which a single program executes
in each of a fixed number of processes that are created at
program startup and remain throughout the execution.
The parallelism is explicit in the parallel system semantics,
in the sense that a serial, deterministic abstract machine
cannot describe all possible behaviors in any straightfor-
ward way. The SPMD model offers more flexibility than
an implicit model based on data parallelism or automatic

parallelization of serial code, and more user control over
performance than either data-parallel or general task-par-
allel approaches.

The processes in an SPMD program synchronize with
each other only at points chosen by the programmer, and
otherwise proceed independently. Locking primitives or
synchronous messages can be used to restrict execution
order, and the most common synchronization construct in
SPMD programs is the barrier, which forces all of the
processes to wait for one another.

In the Titanium design, we chose the SPMD model to
place the burden of parallel decomposition explicitly on
the programmer, rather than the implementation, striving
for a language that could support the most challenging par-
allel problems and give programmers a transparent model
of how the computations would perform on a parallel
machine. Our goal was to allow the expression of the most
highly-optimized parallel algorithms.

3.2 Models of Sharing and Communication

The two basic mechanisms for communicating between
processes are accessing shared variables and sending mes-
sages. Shared memory is generally considered easier to
program, because communication is one-sided: processes
can access shared data at any time without interrupting other
processes, and shared data structures can be directly rep-
resented in memory. Message passing is more cumber-
some, requiring both a two-sided protocol and packing/
unpacking for non-trivial data structures, but it is also more
popular on large-scale machines because it makes data
movement explicit on both sides of the communication.
For example, the popular MPI library provides primitives
to send and receive data, along with collective communi-
cation operations to perform broadcasts, reductions, and
many other global operations (MPI Forum 1995). Mes-
sage passing couples communication with synchroniza-
tion, since message receipt represents completion of a
remote event as well as data transfer. Shared-memory pro-
gramming requires separate synchronization constructs
such as locks to control access to shared data.

While these sharing models are orthogonal to the models
for creating parallelism, there are common pairings. Both
data parallelism and dynamic task parallelism are typi-
cally associated with shared memory, while SPMD paral-
lelism is most commonly associated with message passing.
However, Titanium and several other languages such as
Unified Parallel C (UPC), Co-Array Fortran, Split-C, and
AC couple the SPMD parallelism model with a variation
of shared memory called a partitioned global address space
(PGAS; Culler et al. 1993; Carlson and Draper 1995;
Numrich and Reid 1998; UPC Community Forum 2005).

The term “shared memory” normally refers to a uniform
memory-access-time abstraction, which usually means
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that all data is locally cacheable, and therefore can gener-
ally be accessed efficiently after the first access. A parti-
tioned global address space offers the same semantic model
with a different performance model: the shared-memory
space is logically partitioned and processes have fast access
to memory within their own partition, and potentially slower
access to memory residing in a remote partition. In most
PGAS languages, memory is also partitioned orthogonally
into private and shared memory, with stack variables resid-
ing in private memory, and most heap objects residing in the
shared space. A process may access any variable located in
shared space, but has fast access to variables in its own
partition. PGAS languages typically require the program-
mer to explicitly indicate the locality properties of all shared
data structures – in the case of Titanium, all objects allo-
cated by a given process will always reside entirely in its
own partition of the memory space.

Figure 1 illustrates a distributed linked list of integers in
which each process has one list cell and pointers2 in pri-
vate space to list cells. The partitioning of PGAS memory
may be reflected (as in Titanium) by an explicit distinc-
tion between local and global pointers: a local pointer
must refer to an object within the same partition, while a
global pointer may refer to either a remote or local parti-
tion. As used in Figure 1, instances of 1 are local pointers,
whereas g and nxt are global pointers that can cross par-
tition boundaries. The motivation for this distinction is
performance. Global pointers are more general than local
ones, but they often incur a space penalty to store affinity
information and a time penalty upon dereference to check
whether network communication is required to satisfy the
access.

The partitioned-memory model is designed to scale
well on distributed memory platforms without the need
for caching of remote data and the associated coherence
protocols. PGAS programs can run well on shared-mem-
ory multiprocessors and uniprocessors, where the parti-
tioned-memory model need not correspond to any physical
locality in hardware and the global pointers generally
incur no overhead relative to local ones. Naively-written
programs may ignore the partitioned-memory model and,

for example, allocate all data structures in one process’s
shared-memory partition or perform fine-grained accesses
on remote data. Such programs would run correctly on
any platform but might deliver unacceptable performance
on a distributed-memory platform where a higher cost is
associated with access to data in remote partitions. In con-
trast, a program that carefully manages its data-structure
partitioning and access behavior in order to scale well on
distributed-memory hardware is likely to scale well on
shared-memory platforms as well. The partitioned model
provides the ability to start with functional, shared-mem-
ory-style code and incrementally tune performance for
distributed-memory hardware by reorganizing the affinity
of key data structures or adjusting access patterns in program
bottlenecks to improve communication performance.

4 Parallel Extensions to Java

The standard Java language is ill-suited for use on dis-
tributed-memory machines because it adopts a dynamic
task-parallel model and assumes a flat memory hierarchy. In
this section, we describe the Titanium extensions designed
to support efficient development and execution of paral-
lel applications on distributed-memory architectures.

4.1 SPMD Parallelism in Titanium

Titanium’s SPMD parallelism model is familiar to users
of message-passing models such as MPI (MPI Forum
1995). The following example shows a simple Titanium
program that illustrates the use of built-in methods Ti.
numProcs() and Ti.thisProc(), which query the
environment for the number of processes and the index
within that set of the executing process. The example
prints these indices in arbitrary order. The number of Tita-
nium processes is permitted to exceed the number of phys-
ical processors, a feature that is often useful when debugging
parallel code on single-processor machines. However, high-
performance runs typically use a one-to-one mapping
between Titanium processes and physical processors.

class HelloWorld {
  public static void main (String [] argv){
    System.out.println("Hello from proc " 
      + Ti.thisProc() + " out of " 
      + Ti.numProcs());
  }
}

Titanium supports Java’s synchronized blocks, which
are useful for protecting asynchronous accesses to shared
objects. Because many scientific applications are written
in a bulk-synchronous style, Titanium also provides a
barrier-synchronization construct, Ti.barrier(), as

Fig. 1 Titanium’s memory model.
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well as a set of collective communication operations to
perform broadcasts, reductions, and scans.

A novel feature of Titanium’s parallel execution model
is that barriers must be textually aligned in the program—
not only must all processes reach a barrier before any one
of them may proceed, but they must all reach the same
textual barrier. For example, the following program is
not legal in Titanium:

if (Ti.thisProc() == 0)
    Ti.barrier();  // illegal barrier
else
    Ti.barrier();  // illegal barrier

Program statements executed between successive barri-
ers are generally unconstrained, so that the use of textual
barriers does not imply the kind of lock-step execution
associated with data parallelism. Textual alignment of bar-
riers enables the automated detection and prevention of
program errors that can occur when one process skips a
barrier unintentionally, leading to deadlocks or race con-
ditions. It also turns out to be useful in certain program
analyses, as described in Section 7.2.

4.1.1 Single qualification The decision to require
textual barrier alignment naturally led us to consider how
to enforce this requirement: as a dynamic (run-time) check
causing an exception when processes hit inconsistent bar-
riers, or as a conservative static (compile-time) check.
We decided early on to use static checks on the grounds
that the category of errors associated with barrier-align-
ment violations could be rather obscure and in some
cases (involving infinite loops) might not even be detect-
able by obvious dynamic checks. However, avoiding overly
conservative static checks and unduly expensive analyses
required that users provide some additional informa-
tion.

Aiken and Gay (1998) developed the static analysis used
by the Titanium compiler to enforce the barrier alignment
restrictions, based on two key concepts:

• A statement with global effects is one that must be tex-
tually aligned and thus invoked by all processes collec-
tively. Such statements include those defined by the
language to act as barriers, plus (conservatively) those
that call methods that can execute statements with glo-
bal effects (called single methods) and those that assign
values to single variables—those with single-qualified
types, defined below.

• A single-valued expression is roughly one whose suc-
cessive evaluation yields the same sequence of values
on all processes. Only single-valued expressions may
be used in conditional expressions that affect which
statements with global effects get executed.

As a result, all decisions on program paths leading to a
barrier go the same way on all processes; each process
executes the same sequence of barriers since it takes the
same sequence of branches at critical points.

The only input required from the programmer to
enforce the barrier-alignment rules is some explicit quali-
fication of certain variables (local variables, instance var-
iables, or parameters) and method return types as being
single-valued. For this purpose, Titanium extends the
Java type system with the single qualifier. Variables
of single-qualified type may only be assigned values from
single-valued expressions (similarly for method returns).

The rest of the analysis required to determine that pro-
grams satisfy the barrier alignment requirement is auto-
matic. Determining that an expression is single-valued is
a straightforward application of a recursive definition;
single-valued expressions are defined to consist of liter-
als, single-valued variables, calls to single-valued methods,
and certain operators. The compiler determines which
methods have global effects by finding barriers, assign-
ments to single variables, or (transitively) calls to other
single methods.

The following example illustrates these concepts.
Because the loop contains barriers, the expressions in the
for-loop header must be single-valued, which the com-
piler can check statically, since the variables are declared
single and are assigned from single-valued expressions.

int single allTimestep = 0;
    int single allEndTime = 
      broadcast inputTimeSteps from 0;
for (; allTimestep < allEndTime;
    allTimestep++){ < read values from   
      other processes >
      Ti.barrier();
      < compute new local values >
      Ti.barrier();
}     

We originally introduced single qualification to enable
barrier-alignment analysis. We have since found that sin-
gle qualification on variables and methods is a useful
form of program design documentation, improving read-
ability by making replicated quantities and collective
methods explicitly visible in the program source and sub-
jecting these properties to compiler enforcement. How-
ever, our experience is that the use of single analysis can
sometimes produce errors whose cause is obscure, as
when the analysis detects that activating an exception on
some processes might cause them to bypass a barrier or
to fail to update a single-valued variable properly. Users
seem to have mixed feelings: some find the static detec-
tion of problems to be useful and the need for single
qualification to reflect natural notions about SPMD pro-
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gramming. On the other hand, as one might deduce from
the space required for even an approximate and incom-
plete description, this area of the language has proven to
be among the most subtle and difficult to learn.

4.2 Distributed Arrays

Titanium supports the construction of distributed array
data structures in the partitioned global address space, in
which each process creates its share of the total array.
Since distributed data structures are explicitly built from
local pieces rather than declared as distributed types, Tita-
nium is sometimes referred to as a “local view” language.
We have found that the generality of the pointer-based
distribution mechanism combined with the use of arbi-
trary base indices for arrays provides an elegant and pow-
erful mechanism for constructing shared data structures.

The following code is a portion of the parallel Tita-
nium code for the MG benchmark. It is run on every
processor and creates the blocks3D distributed array,
which can access any processor’s portion of the grid. By
convention, myBlock refers to the block in the proces-
sor’s partition (i.e. the local block).

Point<3> startCell = myBlockPos * 
     numCellsPerBlockSide;
Point<3> endCell = startCell + 
     (numCellsPerBlockSide - [1,1,1]);

double [3d] myBlock = 
     new double[startCell:endCell];

/**/ "blocks" is a temporary 1D array that 
     is used to construct the "blocks3D" 
     array
double [1d] single [3d] blocks = new double 
    [0:(Ti.numProcs()-1)] single [3d];
blocks.exchange(myBlock);

/**/ create local "blocks3D" array 
     (indexed by 3D block position)
double [3d] single [3d] blocks3D = new 
     double [[0,0,0]:numBlocksInGridSide 
       - [1,1,1]] single [3d];

/**/ map from "blocks" to "blocks3D" array
foreach (p in blocks3D.domain())
     blocks3D[p] = blocks[procForBlock-
       Position(p)];

First, each processor computes its start and end indices
by performing arithmetic operations on points. These
indices are used to create a local myBlock array. Every
processor also allocates its own 1-D array blocks. Next,

the exchange operation is used to create a replicated,
global directory of pointers to the myBlock arrays on
each process, which in effect makes blocks a distrib-
uted data structure. As shown in Figure 2, the exchange
operation performs an all-to-all broadcast of pointers, and
stores pointers to each processor’s contribution in the cor-
responding elements of its local blocks array.

Now blocks is a distributed data structure, but it maps
a 1-D array of processors to blocks of a 3-D grid. To create
a more natural mapping, a 3-D array called blocks3D is
introduced. It uses blocks and a method called proc-
ForBlockPosition (not shown) to establish an intu-
itive mapping from a 3-D array of processor coordinates
to blocks in a 3-D grid. Accesses to points in the grid can
then use a conventional 3-D syntax. Both the block and
cell positions are in global coordinates.

In comparison with data-parallel languages like ZPL
or HPF, the “local view” approach to distributed data
structures used in Titanium creates some additional book-
keeping for the programmer during data-structure setup—
programmers explicitly express the desired locality of
data structures through allocation, in contrast with other
systems where shared data is allocated with no specific
affinity and the compiler or runtime system is responsible
for managing the placement and locality of data. How-
ever, the generality of Titanium’s distributed data struc-
tures is not fully utilized in the NAS benchmarks,
because the data structures are simple distributed arrays,
rather than trees, graphs or adaptive structures. Titanium’s
pointer-based data structures can be used to express a set
of discontiguous blocks—as in the AMR code described
in Section 6.1—or an arbitrary set of objects; they are not
restricted to arrays. Moreover, the ability to use a single
global index space for the blocks of a distributed array
means that many advantages of the global view still exist,
as demonstrated in Section 2.2.

4.3 The Local Keyword and Locality Qualification

As illustrated in Section 3.2, Titanium statically makes
an explicit distinction between local and global pointers

Fig. 2 Distributed data structure created by Tita-
nium’s exchange operation for three processors.
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that reflects its PGAS memory model. A local pointer
must refer to an object within the same process partition,
while a global pointer may refer to an object in either a
remote or local partition. Pointers in Titanium are global
by default, but may be designated local using the local
type qualifier.

The blocks distributed array in Figure 2 contains all
the data necessary for the computation, but one of the
pointers in that array references the local block that will
be used for the local stencil computations and ghost cell
surface updates. Titanium’s partitioned global address space
model allows for fine-grained implicit access to remote
data, but well-tuned Titanium applications perform most
of their critical path computation on data that is either
local or has been prefetched into local memory. This
avoids fine-grained communication costs that can limit
scaling on distributed-memory systems with high inter-
connect latencies. To ensure the compiler statically rec-
ognizes the local block of data as residing locally, we
annotate the pointer to this process’s data block using
Titanium’s local type qualifier. The original declaration
of myBlock should have contained this local qualifier.
Below we show an example of a second declaration of
such a variable along with a type cast:

double [3d] local myBlock2 = (double [3d] 
    local) blocks[Ti.thisProc()];

By casting the appropriate grid pointer to a local pointer,
the programmer is advising the compiler to use more effi-
cient native pointers to reference this array, potentially
eliminating some unnecessary overheads in array access
(for example, dynamic checks of whether a given global
array access references data that actually resides locally
and thus requires no communication). Adding the local
qualifier to a pointer does not affect the distribution of
the referenced data; it merely exposes the distribution
properties explicitly for static analysis and documenta-
tion purposes. As with all type conversion in Titanium
and Java, the cast is dynamically checked to maintain type
safety and memory safety. However, the compiler pro-
vides a compilation mode that statically disables all the
type and bounds checks required by Java semantics to
save some computational overhead in production runs of
debugged code.

The distinction between local and global pointers is
modeled after Split-C, but Split-C pointers are local by
default, whereas Titanium pointers are global by default.
The global default makes it easier to port shared-memory
Java code into Titanium, since only the parallel process
creation needs to be replaced to get a functional parallel
Titanium program. However, as noted in Section 3.2,
access to global pointers can be less efficient than local
pointers. As will be shown in Section 7.2, program analy-

sis can be leveraged to automatically convert global to
local pointers. Split-C’s local default discourages the use
of gratuitous global pointers, making such analyses less
important in that language.

4.4 Non-blocking Array Copy

Although the array copy operation is conceptually sim-
ple, it can be expensive when it implies communication
on distributed-memory machines. Titanium enables the
programmer to indicate when the communication induced
by copy can be overlapped with independent computa-
tion or other communication, by selecting the copyNB
Titanium array method to initiate non-blocking copying,
and later ensure completion of the asynchronous commu-
nication using a second library call.

For example, Titanium’s explicitly non-blocking array
copy methods made it possible to considerably improve
the speed of a 3-D FFT solver. A straightforward imple-
mentation of this algorithm performs the FFT as two local
1-D FFTs, followed by a 3-D array transpose in which
the processors collectively perform an all-to-all commu-
nication, followed by another local 1-D FFT. This algo-
rithm has two major performance flaws: processors sit
mostly idle during the communication phase, and the
intense communication during the transpose operation con-
gests the interconnect and saturates at the bisection band-
width of the network.

Both these issues can be dealt with using a slight reor-
ganization of the 3-D FFT algorithm employing non-
blocking array copy. The new algorithm, which we have
implemented in Titanium (Datta et al. 2005), first per-
forms a local 1-D FFT, followed by a local transpose and
a second 1-D FFT. However, unlike the previous algo-
rithm, we begin sending each processor’s portion of the
grid (consisting of 2-D planes) as soon as the corresponding
rows are computed. By staggering the copies throughout
the computation, the network is less likely to become
congested and is more effectively utilized. Moreover, by
using non-blocking array copy to send these slabs, we
were able to hide nearly all of the communication laten-
cies behind the local computation.

4.5 Regions

In object-oriented languages, dynamic memory manage-
ment is both a source of bugs (because memory is freed
too soon) and a source of performance inefficiencies
(because memory is freed too late). One marked contrast
between C++ and Java is in their approaches to memory
management: in C++, memory de-allocation is the pro-
grammer’s responsibility, and in Java it is the runtime sys-
tem’s (specifically, the garbage collector’s). As a result, a
significant portion of the semantic complexity in C++ is
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devoted to giving programmers mechanisms with which
to build memory allocators, and memory management
issues occupy a significant portion of programmers’ atten-
tion.

As a Java derivative, Titanium uses garbage collection
(see Section 7.3). However, implementing garbage collec-
tion for distributed programs with acceptable performance
is still not entirely solved. We desired a mechanism that
would give programmers some control over memory
management costs as well as good locality properties
within a cache-based memory system, but without sacri-
ficing safety. To this end, we added a region-allocation
facility to Titanium, using the work of Gay and Aiken
(2001). A programmer may create objects that serve as
regions of memory to be used for allocation, and may
then specify in which region any heap-allocated object is
to be placed. All allocations in a region may be released
with a single method call. Regions constitute a compromise
– they require some programming effort, but are generally
easier to use than explicit object-by-object de-allocation.
They also represent a safety compromise: deleting a
region while it still contains live objects is an error, which
our implementation might not detect. Because program-
mers typically delete regions at well-defined major points
in their algorithms, this danger is considerably reduced
relative to object-by-object de-allocation.

One other problem with regions indicates an area in
which our design needs refinement. From the programmer’s
point of view, many abstract data structures involve hid-
den memory allocations. The built-in type Domain uses
internal linked structures, for example. Consequently,
innocent-looking expressions involving intersections or
unions may actually allocate memory or cause structure
to be shared. Controlling the regions in which this hap-
pens, while possible, is often clumsy and error-prone.
The overall lesson from our experiences is that although
our compromises have been effective in allowing inter-
esting work to get done, a production implementation would
probably need a true, appropriately specialized garbage
collector.

5 Other Changes to Java

We have discussed the major departures of Titanium from
Java that are directly applicable to parallel scientific com-
puting. There are a number of other additions and varia-
tions that are of some interest to programmers, which we
describe here.

5.1 Immutables and Operator Overloading

The Titanium immutable class feature provides language
support for defining application-specific primitive types
(often called “lightweight” or “value” classes) – allowing

the creation of user-defined unboxed objects, analogous
to C structs (see the discussion of primitive types in Sec-
tion 5.3). Immutables provide efficient support for extend-
ing the language with new types that are manipulated and
passed by value, avoiding pointer-chasing overheads that
would otherwise be associated with the use of tiny objects
in Java.

One compelling example of the use of immutables is
for defining a complex number class, that is used to rep-
resent the complex values in the FT benchmark. In a
straight Java version of such a class, each complex number
is represented by an object with two fields, correspond-
ing to the real and imaginary components, and methods
that provide access to the components of and mathemati-
cal operations on Complex objects. If one were then to
define an array of such Complex objects, the resulting
in-memory representation would be an array of pointers
to tiny objects, each containing the real and imaginary
components for one complex number. This representa-
tion is wasteful of storage space—it imposes the over-
head of storing a pointer and an object header for each
complex number, which can easily double the required
storage space for each such entity. More importantly for
the purposes of scientific computing, such a representa-
tion induces poor memory locality and cache behavior
for operations over large arrays of such objects. Finally, a
cumbersome method-call syntax would be required for
performing operations on complex number objects in
standard Java.

Titanium allows easy resolution of these performance
issues by allowing the immutable keyword in class
declarations. An immutable type is a value class, which
is passed by value and stored as an unboxed type in the
containing context (e.g. on the stack, in an array, or as a
field of a larger object). A Titanium implementation of
Complex using immutables and operator overloading is
available in the Titanium standard library and includes
code like this:

public immutable class Complex {
    public double real;
    public double imag;
    public inline Complex(double r, 
      double i) { real = r; imag = i; }
    public inline Complex op+(Complex c) { 
      return new Complex(c.real + real, 
        c.imag + imag);  }
    public inline Complex op*(double d) { 
      return new Complex(c.real * d, 
        c.imag * d);  }
    ...
}
Complex c = new Complex(7.1, 4.3);
Complex c2 = (c + c) * 14.7;
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Immutable types are not subclasses of java.lang.
Object and induce no overheads for pointers or object
headers. They are implicitly final, which means they
never pay execution-time overheads for dynamic method
call dispatch. All their instance variables are final, which
makes their semantic distinction from ordinary classes
less visible (as for standard Java wrapper classes such as
java.lang.Integer). An array of Complex immu-
tables is represented in memory as a single contiguous
piece of storage consisting of all their real and imaginary
components. This representation is significantly more
compact in storage and efficient in runtime than objects
for computationally-intensive algorithms such as FFT.

The example above also demonstrates the use of Tita-
nium’s operator overloading, which allows one to define
methods corresponding to the syntactic arithmetic opera-
tors applied to user classes. (The feature is available for any
class type, not just for immutables.) Overloading allows
a more natural use of the + and * operators to perform
arithmetic on the Complex instances, allowing the client
of the Complex class to handle the complex numbers as
if they were built-in primitive types. Finally, the optional
use of Titanium’s inline method modifier provides a
hint to the optimizer that calls to the given method should
be inlined into the caller (analogous to the C++ inline
modifier).

5.2 Cross-Language Calls

One of the hallmarks of scientific codes is the use of well-
debugged and well-tuned libraries. Titanium allows the
programmer to make calls to kernels and libraries written
in other languages, enabling code reuse and mixed-lan-
guage applications. This feature allows programmers to
take advantage of tested, highly-tuned libraries, and
encourages shorter, cleaner, and more modular code. Sev-
eral of the major Titanium applications make use of this
feature to access computational kernels such as vendor-
tuned BLAS libraries (Lawson et al. 1979).

As further explained in Section 7.1, the Titanium com-
piler is implemented as a source-to-source translator to
C. This means that any library offering a C-compatible
interface is potentially callable from Titanium (this also
includes many libraries written in other languages such
as C++ or Fortran). Since Titanium has no JVM, there is
no need for a complicated calling convention (such as the
Java JNI interface) to preserve memory safety.3 To per-
form cross-language integration, programmers simply
declare methods using the native keyword and then
supply implementations written in C.

For example, the Titanium NAS FT implementation
calls the FFTW library (Frigo and Johnson 2005) to per-
form the local 1-D FFT computations, thereby leveraging
its auto-tuning features and machine-specific optimizations.

Although the FFTW library does offer a 3-D MPI-based
parallel FFT solver, our benchmark only uses the serial
1-D FFT kernel—Titanium code is used to create and ini-
tialize all the data structures, as well as to orchestrate and
perform all the interprocessor communication.

One of the challenges of the native code integration
with FFTW was manipulating the 3-D Titanium arrays
from within native methods, where their representation
as 1-D C arrays is exposed to the native C code. This was
a bit cumbersome, especially since the FT implementa-
tion intentionally includes padding in each row of the
array to avoid cache-thrashing. However, it was only
because of Titanium’s support for true multi-dimensional
arrays that such a library call was even possible, since the
3-D array data is stored natively in a row-major, contigu-
ous layout. Java’s layout of “multi-dimensional” arrays
as 1-D arrays of pointers to 1-D arrays implies discontigu-
ity of the array data that would have significantly increased
the computational costs and complexity associated with
calling external multi-dimensional computational kernels
like FFTW.

5.3 Templates

In its original version, Titanium lacked any facility for
generic definitions (templates to the C++ programmer),
but we quickly saw the need for them. A minor reason was
the syntactic irregularity of having predefined parameter-
ized types such as Point<3> in the library with no
mechanism for programmers to introduce more. The
major reason, however, came directly from applications.
Here, generic types have many uses, from simple utility
data structures (List<int>) to elaborate domain-spe-
cific classes, such as distributed AMR grid structures, in
which the type parameter encapsulates the state varia-
bles.

Titanium’s formulation of generic types long predates
their introduction into Java with the 5.0 release in August
2004. Partially as a result of that, our design differs radi-
cally from that of Java. The purely notational differences
are superficial (Titanium uses a syntax reminiscent of
C++), but the semantic differences are considerable, as
detailed in the following paragraphs.

Values as generic parameters. As in C++, but unlike
Java, generic parameters in Titanium may be constant
expressions as well as types (providing the ability to
define new types such as  Point<3>). To date, this fea-
ture has not seen much use outside of the built-in types.
In principle, one could write a domain-specific applica-
tion library parameterized by the spatial dimension, but
in practice, this is hard to do: some pieces typically must
be specialized to each dimensionality, and in contrast to
C++, Titanium does not provide a way to define template
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specializations in which selected instantiations of a tem-
plate are defined “by hand,” while the template definition
itself serves as a default definition when no specialization
applies.

No type parameterization for methods. Java and C++
allow the programmer to supply type parameters on indi-
vidual methods, as in the declarations

static <T> void fill(List<? super T> 
    list, T obj) ...
static <T> List<T> emptyList () ...

from the Java library. For these examples, Titanium would
have to make T a parameter of the containing class, which
could cause notational inconvenience. In our particular
collection of applications, we happen to not have had a
pressing need for such definitions, but for a wider audi-
ence, they would probably have to be added to the lan-
guage.

No type bounds. Like C++, but unlike Java, essentially
any type parameter may be instantiated with any type as
long as the class resulting from the substitution is seman-
tically legal. In contrast, Java requires type bounds—in
effect, implicit specifications of the minimal contracts
required of each type parameter. The advantage of Java’s
approach is that errors in a template instantiation may be
explained solely by reference to the specification of the
type parameters, without reference to the details of the
body of the template, making the diagnosis of errors
straightforward. In contrast, Titanium’s approach amounts
to a kind of syntactic macro (although the rules for what
global names refer to what definitions are not quite that
simple). The result is that as a practical matter programmers
(but not formal semanticists) find Titanium’s templates to
be conceptually simpler. In any case, our experience has
been that the potential programmer difficulties with diag-
nosing errors have not materialized.

Primitive types as parameters. In contrast to Java,
Titanium allows primitive types as type parameters (as
does C++). Java’s chosen approach to generic program-
ming causes all instantiations of a generic body to share
all code and representation, making it impossible to use
primitive types as parameters. Titanium uses a macro-
expansion model, which requires no sharing of code
between instantiations, and therefore no commonality
of representation. This particular design choice seems
essential to us. To get the effect of, for example, List
<double> in Java, the programmer must substitute a
wrapper type for double—a class whose instances are
heap-allocated and each contain a double value (a
practice typically known as boxing the primitive values).

The same implementation considerations that apply to
primitive types also apply to Titanium’s immutable types
(which include Complex), so that adopting the Java
model would also require boxing these types (and thus
largely defeating their purpose). The performance conse-
quences of this extra level of indirection and of the
required heap allocations are potentially enormous.

5.4 Other Significant Deviations from Java

Titanium is mostly a superset of Java, and consequently
most serial Java code can run unmodified as part of a
Titanium application. We leverage this fact in our imple-
mentation of the Java standard libraries, which are reused
almost unmodified from the standard Sun Java compiler
distribution. However, Titanium imposes a few signifi-
cant restrictions relative to standard Java that are worthy
of mention.

As described in Section 4, Titanium adopts the SPMD
model of static parallelism, whereby the parallel proc-
esses are all implicitly created at program startup. Conse-
quently, Titanium does not support the Java-style creation
of new threads of execution at runtime, nor any libraries
that rely on this feature for correct operation (notably
including java.awt and java.net). We have inves-
tigated the possibility of allowing dynamic thread crea-
tion within a Titanium process; however this remains an
open area of investigation.

Unlike most Java compilers, our Titanium compiler
performs whole-program compilation (primarily to assist
interprocedural compiler optimization), and the final
compilation result is a native, static binary executable—
Titanium has no Java virtual machine (JVM), no just-in-
time (JIT) optimizer, and no class files. As a conse-
quence of these design decisions, Titanium does not sup-
port dynamic class loading (the Java feature that allows
new sections of program code to be loaded at runtime).
We have found this restriction to be acceptable for our
targeted class of scientific applications, and the improve-
ments it enables in compiler analysis and optimization
make the tradeoff worthwhile.

Finally, Titanium defines a set of “Erroneous Excep-
tions,” which are considered Titanium programming errors
and thus not guaranteed to provide precise exception
behavior as in standard Java. This category includes runt-
ime exceptions such as NullPointerException and
IndexOutOfBoundsException that are implicitly
generated by program statements that attempt to defer-
ence a null pointer or access an array out of bounds. Such
programming errors are still detected and reported by the
Titanium runtime system; however, they are considered
fatal errors, and subsequent program behavior is unde-
fined. This restriction allows for more aggressive optimi-
zation of array accesses in loops, which is crucial for
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performance in scientific applications. This design deci-
sion is in agreement with general scientific programming
practice, where fine-grained program errors are usually
considered fatal and error recovery is handled (if at all) by
using coarse-grained mechanisms such as checkpointing.

For further details on these and other minor deviations
from standard Java, consult the Titanium language refer-
ence (Hilfinger et al. 2001) and compiler release notes.

6 Application Experience

Since the purpose of Titanium is to support high-perform-
ance scientific applications, we have found it essential
from the beginning to create and evaluate application code
written in Titanium. By using a combination of bench-
marks, re-implementations of application codes developed
in other languages, and new codes, we have been able to
evaluate both the expressiveness of the Titanium language
and the performance of its implementation. This continu-
ing experience informs both improvements to the lan-
guage design and improvements to the implementation
technologies we create.

Our application experience includes the three NAS
Benchmarks described in Section 2, along with the NAS
integer sort (IS) and embarrassingly parallel (EP) kernels
(Bailey et al. 1991). In addition, Yau developed a distributed
matrix library that supports blocked-cyclic layouts and
implemented Cannon’s matrix multiplication algorithm,
Cholesky and LU factorization (without pivoting). Balls and
Colella (2002) built a 2-D version of their method of local
corrections algorithm for solving the Poisson equation for
constant coefficients over an infinite domain. Bonachea,
Chapman and Putnam built a microarray optimal oligo
selection engine for selecting optimal oligonucleotide
sequences from an entire genome of simple organisms, to
be used in microarray design. Our most ambitious efforts
have been application frameworks for adaptive mesh refine-
ment (AMR) algorithms and immersed boundary (IB)
method simulations. In both cases these application efforts
have taken a few years and were preceded by implementa-
tions of Titanium codes for specific problem instances,
e.g. AMR Poisson (Pike et al. 1999), AMR gas dynamics
(McCorquodale and Colella 1999) and IB for 1-D immersed
structures (Yau 2002; Merchant 2003).

6.1 Adaptive Mesh Refinement Framework

Since it was first developed by Berger and Oliger (1984)
for hyperbolic partial differential equations (PDEs), the
AMR methodology has been successfully applied to numer-
ical modeling of various physical problems. In Titanium,
we have implemented a prototype of block-structured
AMR following Chombo’s software architecture (Wen
and Colella 2005). Chombo (Applied Numerical Algo-

rithms Group n.d.) is a widely used AMR software pack-
age for finite difference discretization written in C++ and
Fortran with MPI. Our Titanium implementation includes
an infrastructure modeled after Chombo for supporting
AMR applications and an elliptic PDE solver that uses
the framework. The code is being used by IBM as a
benchmark to evaluate its new HPCS language ×10.

Almost all the Titanium features appear in our implemen-
tation of AMR, which is challenging due to the irregulatory
caused by local mesh refinement. The AMR computation
uses stencil operations as in NAS MG, but the data struc-
ture itself is a hierarchy of grids at various levels of refine-
ment. The set of grids at a particular level of refinement
forms a sparse coverage of the problem domain that
requires the generality of Titanium’s directory-based dis-
tributed arrays. Figure 3 diagrams a portion of a grid hier-
archy in two dimensions; in a real application there are
generally several levels of refinement, but only two are
shown here. The stencil operations may require values
that are on neighboring grids at the same level or adjucent
levels. Each grid is owned by a particular process, and for
load balancing reasons, the set of grids are distributed to
roughly balance computational load. While some atten-
tion is paid to locality in the load balancing algorithms, a
neighboring grid is likely to be owned by a different proc-
ess. Titanium’s language support for domain calculus and
sub-arrays facilitates the irregular computation of ghost
values at the various types of grid boundaries. The Tita-
nium code below demonstrates the exchange of the inter-
section values between grids on the same level.

for (int i = 0; i < numOfGrids; i++) {
    GridData curGrid = myGrids[i];
    GridData [1d] neighbors = 
      curGrid.getNeighbors();

Fig. 3 Two levels of an adaptive 2-D mesh.
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    for (int j = 0; j < curGrid.
      neighborCount; j++) {
        curGrid.copy(neighbors[j]);
    }
}

GridData is a user-defined wrapper class for a Tita-
nium array. The copy method of the GridData class
simply invokes the array copy method of the Titanium
array it represents. The array copy method call computes
the intersection domain of curGrid and its neighbor,
and the values in the intersection are copied from the
neighbor to curGrid. When the neighbor is remote,
communication is performed by the runtime system. In
AMR, the average intersection size is around 4KB,
which implies that many of the data transfers are too
small to achieve peak bandwidth on modern networks.
The compiler performs automatic packing to aggregate
the small messages using an SMP-aware communication
model.

Titanium templates provide very similar functionality
to C++ templates, allowing our infrastructure to mirror
the templatized Chombo interface. Region-based mem-
ory management handles allocation and de-allocation of
temporary data structures. Overall, the Titanium imple-
mentation is more concise than its Chombo counterpart
as shown in Section 6.3. Based on our case study (Su,
Wen, and Yelick 2006), we find the performance of our
AMR code matches that of Chombo on uniprocessors
and SMP architectures. It also shows comparable scala-
bility to Chombo on an IBM SP machine using up to 112
processors.

6.2 Immersed Boundary Method

The immersed boundary method is a general approach
for numerical modeling of systems involving fluid-struc-
ture interactions, where elastic (and possibly active) tissue
is immersed in a viscous, incompressible fluid. Peskin
and McQueen first developed this method to study the
patterns of blood flow in human hearts (Peskin 1972;
McQueen and Peskin 1983). It has subsequently been
applied to a variety of problems, such as platelet aggrega-
tion during blood clotting, the swimming of eels, sperm
and bacteria, and three-dimensional models of the coch-
lea. These and many other applications are described in a
survey by Peskin (2002). The applications are computa-
tionally intensive – for example, a single heartbeat required
100 CPU hours on a Cray vector machine. However,
there were no distributed-memory implementations of
the 3-D method prior to our work (Yau 2002; Merchant
2003; Givelberg and Yelick 2006).

We have developed a Titanium implementation of an
immersed boundary method solver (Givelberg and Yelick

2006) and applied it to a variety of synthetic problems as
well as modeling the cochlea (Givelberg and Bunn 2003)
and the heart (McQueen and Peskin 1983). The complex-
ity of the immersed boundary method comes from the
interactions between the fluid and the boundaries of the
material within it. The fluid is implemented as a uniform
3-D mesh, while the materials consist of an arbitrary set
of 1-D, 2-D, or 3-D structures, which are non-uniformly
distributed and move during the simulation. The fluid
and materials interact, creating irregular patterns of com-
munication between processors, and attempts to place
material in the same memory partition as the nearby fluid
result in load imbalance.

Titanium’s object-oriented features and support for
direct control over data layout facilitates the implementa-
tion of this class of numerical algorithms. The generic
framework provides support for fluid flow simulation
and fluid/material interaction, while each application of
the method instantiates the generic material types with
the unique features required by the physical entity. Our
Titanium implementation uses a Navier–Stokes solver
based on a 3-D FFT, which calls FFTW using cross-lan-
guage calls as described in Section 5.2. We implemented
application-level message packing for better scalability
on distributed-memory machines, and are investigating the
use of library and language support for automated aggre-
gation to provide competitive performance without the
burden of manual packing.

6.3 Expressiveness

Titanium does an excellent job of handling sub-arrays,
especially in hierarchical grid algorithms, which use them
extensively. These algorithms usually leverage many of
the other previously mentioned Titanium features as well,
resulting in greater productivity and shorter, more reada-
ble code. As a rough comparison of language expressive-
ness, Figure 4 compares the line counts of Titanium with
other implementations of the NAS MG benchmark and
AMR.

In the case of MG, our Titanium implementation was
compared with version 2.4 of the NAS MG reference imple-
mentation, written in Fortran with MPI. Only non-com-
mented, timed code was included in the MG line counts.
While the Titanium MG code is algorithmically similar to
the NAS MG code, it is completely rewritten in the Tita-
nium paradigm (i.e. one sided-communication in a Parti-
tioned Global Address Space memory model). The major
difference between the Titanium and Fortran line counts
is in communication – specifically, ghost cell updates.
Titanium’s domain calculus and array copy features con-
cisely capture much of Multigrid’s required functionality.

The line count comparison for AMR also overwhelm-
ingly favors Titanium. The reasons are similar to those
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given for Multigrid. In general, the domain calculus
functionality that had to be implemented as libraries in
the C++/Fortran/MPI code is supported at the language
level in Titanium. Both versions of the AMR code use
templates, as discussed in Section 5.3, so this does not
account for any difference in line counts.

6.4 Performance

Despite Titanium’s expressiveness, it is first and fore-
most a high-performance computing (HPC) language. In
order to be attractive to programmers, an HPC language
must demonstrate at least comparable performance to the
parallel programming solutions in common usage, most
notably Fortran+MPI.

Figure 5 compares Fortran and Titanium for the NAS
FT and MG benchmarks running on the two InfiniBand
cluster systems detailed in Table 1. The left graph shows
that the Titanium version of FT thoroughly outperforms
the standard Fortran+MPI implementation, primarily due

to two optimizations. First, the Titanium code uses pad-
ded arrays to avoid the cache-thrashing that results from
having a power-of-two number of elements in the contig-
uous array dimension. This explains the performance gap
between Fortran and the blocking Titanium code. Sec-
ond, the best Titanium implementation also utilizes the
non-blocking array copy feature, as explained in Section
4.4. This permits us to overlap communication during the
global transpose with computation, giving us a second
significant improvement over the Fortran code. As a result,
the best Titanium code performs 36% faster than the ref-
erence Fortran code on 64 processors of the Opteron/
InfiniBand system.

Both implementations of the FT benchmark use the
same version of the FFTW library (Frigo and Johnson
2005) for the local 1-D FFT computations, since it was
found to always outperform the local FFT implementa-
tion in the stock Fortran implementation. However, all
the communication and other supporting code is written
in the language being examined. Bell et al. (2006) dem-

Fig. 4 NAS MG, AMR and IB line count comparisons. The Elliptic PDE Solver module of the C++ AMR code has
more functionality than the Titanium version and that the Fortran IB version contains only vector annotations but no
MPI code or other support for distributed-memory parallelism.

Fig. 5 Speedup graphs for NAS FT and MG. The FT benchmark solves a 5123 problem, while MG solves a 10243

problem. All speedups are based on the best time (for either language) at 16 processors.
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onstrated that similar communication optimizations can
be expressed in the Fortran+MPI code, but doing so
delivers less impressive performance improvements due
to the higher overheads associated with fine-grained MPI
message passing relative to the lighter-weight one-sided
communication operations exposed by PGAS languages.

The right side of Figure 5 provides a performance com-
parison for the NAS MG benchmark. Again, the Titanium
version employs non-blocking array copy to overlap
some of the communication time spent in updating ghost
cells. However, the performance benefit is not nearly as
great as for FT, since each processor can only overlap
two messages at a time, and no computation is done dur-
ing this time. Nevertheless, the results demonstrate that
Titanium performs only marginally worse than Fortran
for MG. The MG performance scales fairly linearly, as
expected since the domain decomposition is well load-
balanced for all the measured processor counts.

The larger Titanium applications are still undergoing
scalability analysis and tuning, and inherent challenges
such as load imbalance and high communication to com-
putation ratios make linear scaling unlikely in any language.
As described in Section 6.1, we find the performance
of our AMR code closely matches that of C++/Fortran
Chombo on uniprocessors and SMP architectures, and
provides comparable scalability. For the immersed bound-
ary method, there is no MPI equivalent against which
to compare, but our code runs on distributed-memory
machines, where it outperforms previous shared-memory
implementations and enables new application simula-

tions. The code demonstrates a five times speedup on the
5123 problem size in moving from 16 to 128 processors
on an IBM SP (Givelberg and Yelick 2006). We believe
the use of non-blocking communication combined with
hardware that supports communication overlap will ben-
efit both codes.

7 Compilation and Runtime Technology

We have shown that Titanium’s performance is compa-
rable to that of other parallel programming environ-
ments. Achieving this level of performance and portability
required extensive work both in the compiler and the runt-
ime layer, though we leveraged existing solutions where
possible.

7.1 Source-to-Source Compilation

Figure 6 illustrates the high-level system architecture of
the Titanium implementation. The compiler translates
Titanium code into C code, and then hands that code off
to the vendor-provided C compiler to be compiled and
linked with the Titanium runtime system and, in the case
of distributed-memory backends, with the GASNet com-
munication system. Titanium compilation incorporates uses
of the Titanium standard library and optimizes instances
of its use as appropriate. Unlike HPJava, we chose C
as a compilation target instead of Java bytecode in
order to maximize portability, since several high-end
supercomputers such as the Cray X1 and the IBM Blue

Table 1
Platforms on which Titanium was measured.

System Processor Network Software Location

Alpha/Elan3 Quad 1 GHz Alpha 21264 
(750 nodes 4 GB/node)

Quadrics QsNet1 Elan3 
dual rail (one rail used)

Tru64 v5.1, Elan3 libelan 1.4.20, 
Compaq C V6.5-303, HP Fortran 
Compiler X5.5A-4085

PSC/Lemieux

Itanium2/
Elan4

Quad 1.4 GHz Itanium2 
(1024 nodes 8 GB/node)

Quadrics QsNet2 
Elan4

Linux 2.4.21-chaos, Elan4 libelan 
1.8.14, Intel ifort 8.1.025, icc 
8.1.029

LLNL/Thunder

x86/Myrinet Dual 3.0 GHz Pentium 4 
(64 nodes 3 GB/node)

Myricom Myrinet 2000 
M3S-PCI64B

Linux 2.6.13, GM 2.0.19, Intel 
ifort 8.1.029, icc 8.1.033

UC Berkeley/
Millenium

G5/InfiniBand Dual 2.3 GHz G5 
(1100 nodes 4 GB/node)

Mellanox Cougar 
InfiniBand 4x HCA

Apple Darwin 7.8.0, Mellanox 
InfiniBand OSX Driver v1.04, 
IBM XLC/XLF 6.0

Virginia Tech/
SystemX

Opteron/quad 
InfiniBand

Dual 2.2 GHz Opteron 
(320 nodes 4 GB/node)

Mellanox Cougar 
InfiniBand 4x HCA

Linux 2.6.5, Mellanox VAPI, 
MVAPICH 0.9.5, Pathscale CC/
F77 2.2

NERSC/Jacquard

SP/quad 
Federation

8-way 1.5 GHz Power4 
(272 nodes 32 GB/node)

IBM Federation IBM AIX 5.2, IBM LAPI v2.3.3.3, 
IBM XLC/XLF 6.0

SDSC/Datastar
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Gene lack Java compilers and possibly the OS support
required for a fully-operational JVM. Unfortunately,
different machine architectures offer different sets of sup-
ported C compilers, which differ in optimization aggres-
siveness. On the same architecture, the performance
difference from using one C compiler versus another on
the generated C code can be as much as a factor of three.
The one aspect the C compilers all have in common is
that none were designed for compiling automatically-
generated C code – consequently, we sometimes find
undiscovered bugs in the C compilers while compiling large
Titanium programs.

The most challenging part of the interaction with the C
compilers is the effort required to achieve the best serial
performance for the compiled executable. Some C com-
pilers’ optimizations are very sensitive to the way the C
code is written. To find such optimization opportunities,
it is often necessary for the Titanium translator writer to
examine the assembly code to check which optimizations
were not applied.

One example is the code generation induced by the
strides in Titanium arrays. Each Titanium array is allo-
cated with a rectangular index domain. The logical stride
of a domain specifies the difference between the coor-
dinates of nearest neighboring points. The physical stride,
a run-time quantity, is the difference between the addresses
in memory of successive elements along one dimension.
Strides are currently stored as variables in the generated
C code. For array accesses in loops, we found that sev-
eral C compilers were unable to unroll the loop generated
by the Titanium compiler, but that we could enable the
unrolling optimization by generating code with compile-
time constant physical strides. Consequently, we are
developing a stride-inference analysis for the Titanium
compiler to statically determine strides with known con-
stant values.

7.2 Program Analysis of Parallel Code

Aggressive program analysis is crucial for effective opti-
mization of parallel code. Our analyses allow the Titanium
front end compiler to remove unnecessary operations and
to provide more information to the back-end C compiler
for use in its optimizations. Since Titanium is a dialect of
Java, many Java analyses can be adapted to analyze Tita-
nium programs. In addition, Titanium’s structured paral-
lelism simplifies program analysis. In this section, we
describe some of the Titanium-specific analyses used in
the Titanium optimizer.

7.2.1 Concurrency analysis Information about what
sections of code may operate concurrently is useful for
many optimizations and program analyses. In combina-
tion with alias analysis, for example, it allows the detec-
tion of potentially erroneous race conditions. We have
used it to remove unnecessary synchronization opera-
tions and provide stronger memory consistency guaran-
tees (Kamil, Su, and Yelick 2005).

Titanium’s textually aligned barriers and single-valued
expressions place two important constraints on parallel
programs:

1. The barriers in a Titanium program divide it into
independent phases. Each textual instance of a bar-
rier defines a phase, which includes all the expres-
sions that can run after the barrier but before any
other barrier. Since all processes must execute the
same textual sequence of barriers and no process
may pass a barrier until all processes have reached
it, all processes must be in the same phase. This
implies that no two phases can run concurrently.

2. Titanium introduces the concept of single-qualifi-
cation – the single type qualifier guarantees the
qualified value is coherently replicated across all
SPMD processes in the program, as explained in
Section 4.1. Since a single-valued expression must
have the same value on all processes, all processes
must take the same branch of a conditional guarded
by such an expression. If such a conditional is only
executed at most once in each phase, then the dif-
ferent branches cannot run concurrently.

These two constraints allow a simple graph encoding of
the concurrency in a program based on its control-flow
graph. We have developed quadratic-time algorithms that
can be applied to the graph in order to determine all pairs
of expressions that can run concurrently (Kamil and
Yelick 2005).

7.2.2 Alias analysis Alias analysis identifies pointer
variables that may, must, or cannot reference the same

Fig. 6 High-level system architecture of the Titanium
implementation.
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object. We use alias analysis to enable other analyses
(such as race detection), and have considered also using
it directly to find places where it is valid to introduce
restrict qualifiers in the generated C code, enabling
the C compiler to apply more aggressive optimizations.
Applied to arrays, alias analysis can indicate Titanium
arrays with identical physical strides or with compile-
time constant strides, alleviating some of the problems in
source-to-source translation described in Section 7.1.

The Titanium compiler’s alias analysis is a Java deriv-
ative of Andersen’s (1994) points-to analysis. Each allo-
cation site in a program is assigned an abstract location,
and each variable has a set of abstract locations to which
it can point. The implicit and explicit assignments in a
program propagate abstract locations from source to des-
tination. The analysis used in the Titanium compiler is
flow-insensitive, and it iterates over all assignment expres-
sions in a program in an unspecified order until a fixed
point is reached. Two variables can then refer to the same
memory location if their corresponding sets contain com-
mon abstract locations.

The analysis described thus far is purely sequential; it
does not account for transmission of pointers, such as
through a broadcast. The solution the Titanium compiler
uses is to define two abstract locations for each allocation
site: a local version that corresponds to an allocation on
the current process, and a remote version that corresponds
to an allocation on some other process. Transmission of
an abstract location produces both the local and remote
versions, since the source of the transmission is not nec-
essarily known at compilation time. Two variables on
different processes can refer to the same location only if
one variable can point to the remote version of an alloca-
tion site, and the other variable can point to either the
local or the remote version of the same site.

The modified analysis is only a constant factor slower
than the sequential analysis, and Titanium’s SPMD
model of parallelism implies that it only needs to be per-
formed for a single process. Its efficiency is thus inde-
pendent of the number of runtime processes.

7.2.3 Local qualification inference As described in
Section 4.3, pointers in Titanium can be declared as local
or global. By default, pointers are global, since this places
fewer restrictions on their use than does local qualifica-
tion. This generality comes at a cost, however, since glo-
bal pointers are less space- and time-efficient than local
pointers. Manually inserting local qualifiers into user
code can be tedious and error-prone, and is impossible in
the case of the standard libraries.

The Titanium optimizer includes a local qualification
inference (LQI) that automatically determines a conserv-
ative set of pointers that can be safely converted to local.
Using a constraint-based inference, it automatically prop-

agates locality information gleaned from allocation state-
ments and programmer annotations through the application
code (Liblit and Aiken 2000). Local qualification enables
several important optimizations in the implementation of
pointer representation, dereferencing, and array access.
These optimizations reduce serial overheads associated
with global pointers and enable more effective optimiza-
tion and code-generation by the backend C compiler.
Figure 7 illustrates the effectiveness of the LQI optimiza-
tion by comparing the execution performance of the CG
and MG implementations with the compiler’s LQI opti-
mization disabled or enabled, with identical application
code. The graph demonstrates that in both benchmarks,
significant benefit is provided by the LQI optimization –
by statically propagating locality information to pointer
and array variables throughout the application, the opti-
mization has effectively removed serial overheads asso-
ciated with global pointers and delivered a total runtime
speedup of 239% for CG and 443% for MG.

7.2.4 Converting blocking to non-blocking opera-
tions An array copy is a bulk communication operation
in Titanium between two arrays. The contents of the source
array are copied to the destination array where the domains
of the two arrays intersect. This operation is semantically
blocking, which means that the process executing the
array copy waits until the operation completes before mov-
ing on to the next instruction. If either the source array or
the destination array is remote, then communication over
the network is required. Although a non-blocking array
copy interface is exposed to the programmer, using non-
blocking array copy explicitly in the application code can
complicate the code and introduce synchronization errors
that are difficult to find.

A compiler optimization that automatically converts
blocking array copies into non-blocking operations has
been developed in the Titanium compiler. The goal of this

Fig. 7 Performance speedup obtained with the LQI
compiler optimization.
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optimization is to push the synchronization that ensures
the completion of the array copy as far down in the instruc-
tion stream as possible, allowing subsequent computation
and communication operations to be overlapped with the
communication latency of the array copy.

7.2.5 Inspector/executor The Titanium compiler has
support for the inspector/executor framework (Su and
Yelick 2005) to optimize irregular remote accesses of the
form a[b[i]] that appear in a loop. The array access
pattern is computed in an initial inspector loop. All the
required elements are prefetched into a local buffer. The
executor loop then uses the prefetched elements for the
actual computation. Different methods of communication
can be used for prefetching data into a local buffer. These
include:

1. Pack method: only communicates the needed ele-
ments without duplicates. The needed elements are
packed into a buffer before sending them to the
processor that needs the data.

2. Bound method: a bounding box that contains the
needed elements is retrieved.

3. Bulk method: the entire array is retrieved.

The best communication method is both application
and machine specific. The application determines the
size of the array, number of accesses to that array, and
the size of the bounding box. The machine gives different
memory and communication costs. The Titanium com-
piler generates code that can choose the best communica-
tion method at runtime based on a performance model.

7.3 Memory Management

In order to minimize our implementation effort and to
achieve portability, we chose to adopt the widely used
Boehm–Demers–Weiser conservative garbage collector
(Boehm n.d.; Boehm and Weiser 1988) for collection
within a single shared memory, rather than implementing
our own collector. Conservative collectors do not depend
on type information from the compiler to find pointers,
but instead use a simple heuristic, “if it looks like a valid
pointer, assume that it is,” to mark a superset of reacha-
ble storage as active. They do not collect all garbage and
spend some unnecessary time scanning data that does not
contain pointers, but have proven to be effective at a rea-
sonable cost [Detlefs, Dosser, and Zorn (1993) reported a
20% execution-time penalty over a variety of non- scien-
tific benchmarks in C, compared with explicit allocation
and de-allocation]. For distributed collection, we add to
this a simple conservative scheme in which local pointers
that are communicated to a remote node are added to the
local root set. This scheme is sound (collects no active

storage) but leaky, since once an object becomes known
outside a node, it is never collected.

We considered a more accurate distributed collection
model, but were concerned about scalability of any fully
automatic solution and the required development effort,
since we use several platforms where the Boehm–Dem-
ers–Weiser collector is not supported. This was a princi-
pal motivation for introducing region-based memory
management into the language (see Section 4.5).

7.4 GASNet and One-Sided Communication

Titanium’s partitioned global address space model relies
on one-sided communication for performing remote reads
and writes and encourages the use of remote accesses
directly through application-level data structures; this
tends to yield smaller messages than when aggregation is
done manually, as is common in message-passing program-
ming. Thus, a goal of our runtime work was to support
fast one-sided communication that performs well even on
small messages. While hardware will of course limit
absolute performance, our goal was to expose the best
possible performance available on each network. Because
language and compiler technology continue to evolve
over the years, we also wanted the communication sup-
port to be extensible, so that runtime features such as
automatic packing (Su and Yelick 2005) or software cach-
ing protocols could be implemented without redesigning
the communication layer. Finally, we wanted a communi-
cation layer that could easily be ported across a variety of
networks, since portability is essential to the success of
any language. One important strategic decision was to
make the communication layer language-independent,
allowing us to leverage this implementation work in the
context of other active parallel language efforts such as
UPC (UPC Community Forum 2005) and Co-Array For-
tran (Numrich and Reid 1998).

The need for one-sided communication made tradi-
tional MPI (MPI Forum 1995) a poor target for our com-
piler, since emulation of one-sided put/get operations over
two-sided message passing incurs unacceptable perform-
ance penalties (Bonachea and Duell 2003). A careful anal-
ysis of the MPI-2 one-sided interface (MPI Forum 1998)
also convinced us that it was designed primarily for mon-
olithic application development and imposes semantic
restrictions that make it unsuitable as a compilation tar-
get for parallel languages. ARMCI (Nieplocha and Car-
penter 1999) offers some of our desired features, but
lacks extensibility and enforces message ordering that we
believed was an unnecessary performance handicap for a
compilation target.

7.4.1 GASNet overview Titanium’s distributed-mem-
ory backends are implemented using our GASNet com-
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munication system (Bonachea 2002; http://gasnet.cs.
berkeley.edu/), which provides portable, high-perform-
ance, one-sided communication operations tailored for
implementing PGAS languages across a wide variety of
network interconnects. GASNet provides extensibility using
an Active Message abstraction (von Eicken et al. 1992),
which can be used to implement remote locking, distrib-
uted garbage collection, and other language-specific com-
munication operations. In addition to Titanium, GASNet
serves as the communication layer for two Unified Parallel
C (UPC) compilers (Intrepid Technology Inc. n.d.; Ber-
keley UPC 2002), a Co-Array Fortran compiler (Open64
n.d.), and some experimental projects. To date, the GAS-
Net interface has been natively implemented on Myrinet
(GM; Myricom Inc. 2002), Quadrics QsNetI/QsNetII
(elan3/4; Quadrics Supercomputing n.d.), InfiniBand
(Mellanox VAPI; Mellanox Technologies Inc. 2001), IBM
SP Colony/Federation (LAPI; IBM 2003), Dolphin (SISCI;
Dolphin Interconnect Solutions 2001), Cray X1 (SHMEM;
Bell et al. 2004) and SGI Altix (SHMEM; Cray Inc. 2003).
These native implementations successfully expose the high-
performance capabilities of the network hardware such
as remote direct memory access (RDMA) to the PGAS
language level, notably including automatic and efficient
handling of issues such as memory registration on pin-
ning-based networks using the novel Firehose (Bell and
Bonachea 2002) algorithm. Aside from the high-per-
formance instantiations of the GASNet interface (con-
duits), there are also fully portable GASNet conduits for
MPI 1.1 (for any MPI-enabled HPC system not natively
supported), GASNet on UDP (for any TCP/IP network,
e.g. Ethernet), and GASNet for shared-memory SMP’s
lacking interconnect hardware. Our GASNet implemen-

tation is written in standard C and is portable across
architectures and operating systems – thus far it has been
successfully used on over 16 different CPU architectures,
14 different operating systems, and 10 different C com-
pilers, and porting existing GASNet conduits to new
UNIX-like systems is nearly effortless.

GASNet’s point-to-point communication API includes
blocking and non-blocking puts and gets that are fully
one-sided and decoupled from inter-process synchroniza-
tion, with no relative ordering constraints between out-
standing operations. Recent additions include support for
non-contiguous data transfers and collective communica-
tion, both designed specifically for PGAS languages. The
GASNet implementation is designed in layers for porta-
bility: a core set of active message functions constitute
the basis for portability and extensibility, and we provide
a reference implementation of the full API in terms of
this core. In addition, the implementation for a given net-
work can be tuned by implementing any appropriate subset
of the general functionality directly upon the hardware-
specific primitives. Our research using GASNet has shown
that the layered design approach is effective at providing
robust portability as well as high performance up to the
application level on architectures ranging from loosely
coupled clusters with a near-commodity network (Chen
et al. 2003) to tightly coupled MPP systems with a hard-
ware-supported global memory system (Bell et al. 2004).

7.4.2 GASNet microbenchmark performance Fig-
ure 8 compares the latency and bandwidth microbench-
mark performance of Titanium with GASNet versus MPI
across a range of systems, and shows that, contrary to
popular belief, many networked cluster systems are bet-

Fig. 8 Microbenchmark performance comparison of Titanium/GASNet versus MPI across systems. The latency
graph compares the round-trip latency for an 8-byte raw MPI message-passing ping-pong (best case over MPI_Send/
MPI_Recv or MPI_ISend/MPI_IRecv) against a Titanium/GASNet blocking put operation (which blocks for the round-
trip acknowledgment). Bandwidth graphs show the peak bandwidth at 4 kB and 2 MB transfer sizes for a unidirec-
tional message flood of the given size, and no unexpected MPI messages. Bandwidth bars are normalized to the
hardware peak (a minimum of the I/O bus bandwidth and link speed, as shown in parentheses), and labels show the
absolute value in MB/s (MB = 220 bytes).
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ter suited to the kind of one-sided communication found
in Titanium than to MPI’s two-sided message-passing
model. All numbers were collected on large production
supercomputers with multiple layers of switching, as
detailed in Table 1. Our data differs (especially in latency
measurements) from many vendor-reported numbers, which
are often collected under laboratory conditions with zero
or one levels of switching. The MPI data reported here is
the best result obtained by running all available MPI
implementations and running two different MPI bench-
marks, one using blocking communication (from OSU;
Liu, Wu, and Panda 2004) and another using non-block-
ing communication. In all cases the MPI performance
shown notably does not include the cost of emulating the
put/get operations required by PGAS languages over
MPI message-passing, which would add considerable
additional overhead (Bonachea and Duell 2003).

The performance results demonstrate that Titanium’s
GASNet communication layer matches or exceeds the
performance of MPI in all cases, notably providing a sig-
nificant improvement in small message round-trip latencies
and medium-sized message bandwidths. The primary expla-
nation for the performance gap is not related to clever
implementation, but rather is semantic and fundamental:
GASNet’s put/get primitives were specifically designed
to map very closely to the RDMA and distributed shared-
memory capabilities of modern interconnects—directly
exposing the raw hardware performance while avoiding
the well-known complexities and costs associated with
message-passing (which include in-order delivery, mes-
sage envelope matching, eager buffering copy costs, ren-
dezvous messages, and unexpected message queuing
costs). The differences are even more pronounced on sys-
tems with good hardware support for remote memory
access such as the SGI Altix or Cray X-1 (Bell et al. 2004).
On such systems, the hardware allows GASNet put/gets
to expand to simple zero-copy load/store instructions
(whose performance is often limited only by memory
system performance), whereas the MPI implementation
pays significant messaging overheads and extra copy
costs.

8 Conclusions

The two main practical obstacles to high-performance
scientific programming are the increasing complexity of
its applications and the diversity, both in specification
and performance characteristics, of the architectures that
support it. Titanium attempts to address both—we believe
successfully. Titanium allows programmers to exploit
modern program-structuring techniques by starting from
an object-oriented base language (Java). Our choice of a
global address space smoothes the transition from famil-
iar sequential programming to distributed programming

by hiding many of the low-level complexities of network
communication. Similarly, the SPMD nature of the lan-
guage simplifies communication and synchronization
among processes while avoiding the limitations of data-
parallel languages. At the same time, the partitioning of
the shared address space gives programmers explicit con-
trol over data layout, which is essential to performance
and well-matched to the SPMD computation model. Tita-
nium’s extensions to arrays concisely and efficiently
address the management of many data-structuring details
for a large class of scientific simulations.

At the same time, our experiences with GASNet indi-
cate that it is possible to support a programmer-friendly
global memory model over a range of parallel architec-
tures without undue sacrifice of performance. The use of
a source-to-source translator ensures the necessary porta-
bility, and the included analyses and optimizations pro-
vide performance comparable to that of native compilers
for languages with significantly less abstraction and pro-
ductivity features. The modifications made to the Java
language itself to enhance serial and parallel perform-
ance were not extensive: immutable types, a template
model allowing primitive type arguments, multi-dimen-
sional arrays, locality qualification, and a region-based
memory allocation feature.

Our application studies reveal the enormous potential
in programmer productivity from a language like Tita-
nium, as evidenced by the significant decrease in code
size compared with other languages. Features such as built-
in domain types, templates, operator overloading, foreach
loops, and support for cross-language development enhance
productivity and promote code reuse. The Titanium
immersed boundary method framework is the only imple-
mentation of this framework that runs on distributed-
memory parallel machines, in spite of years of ongoing
development with the method and its applications. The
Titanium implementation of the Chombo AMR frame-
work has the same functionality as the Chombo code in
MPI, but is significantly cleaner and less than one tenth
the size, in large part due to the global address space
model and to the powerful array and domain-calculus
abstractions, which move software complexity into the
language runtime where it can be reused across applica-
tion domains.
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Note
1 The terminology used for the individual sequential computa-

tions varies, unfortunately. In this paper, we will use the term
process, except in contexts (such as Java or POSIX libraries)
where thread is the preferred terminology.

2 In this paper, we use the C/C++ term pointer to refer generi-
cally to values that may be dereferenced to yield objects. The
term used in the Java specification is reference. Historically,
the two terms were synonymous, and “reference” has its own
meaning in C++.

3 Our use of a conservative garbage collector for automatic
memory management eliminates the need to statically identify
the location of all pointers at runtime, which eases interopera-
bility with external libraries relative to copying garbage collec-
tors that are typically used by standard Java implementations.
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