The “MPI_T” Tools Interface in MPI-3
and MPICH2

Dave Goodell
goodell@mcs.anl.gov

Mathematics & Computer Science Division
Argonne National Laboratory

é,«,\ U.S. DEPARTMENT OF
.2/ ENERGY



Questions for You

= Who here maintains a tool for MPI programs?
= Who knows MPI-3 is in development?
= Who has heard of MPI_T before now?



Motivation

" Tons of info trapped inside MPI libraries

" |naccessible through any standard interface (except
PMPI)

= Potentially brand new tool needed for each MPI
implementation

= PERUSE deemed too rigid, not widely implemented



MPI_T: a new interface for tools

= MPI_T will allow standardized API access to:
— “control variables”

— “performance variables”

= How, not what
= Supports multiple simultaneous tools

= MPI-3 is slated for ratification this September
— Will include MPI_T
— Chapter draft at: http://bit.ly/M4BvNu




Control Variables

= Similar to environment variables (or Open MPI MCA
params)

= MPI only specifies APl access
= Read-only / Read-write both supported
= Global scope, no per-object binding

= Each var has:
— An integer index identifier
— A name
— A datatype
— A description
— Some other properties...



Control Variable Examples

= MPI collective algorithm selection
= Eager limit thresholds

= Selectable threading strategies

= Network transport selection



Performance Variables

Think PAPI (sort of) for MPI information

= Several types:
— Discrete states
— Counters
— High/low water marks
— Timings
— Percentages
— Afew others...

= Optionally reset-able

= May be bound to specific objects (communicators,
datatypes, etc)



Performance Variable Examples

= Current unexpected queue (UQ) length

= Total match attempts in posted queue (PQ) since last var
reset



Variable Categorization

Variables can be grouped into categories
Categories may contain categories
Forms a tree of categories

Talk to me later if you want more info



APl Look & Feel

= Cbindings only

= Uses small subset of predefined MPI datatypes:
— MPI_INT
— MPI_UNSIGNED
— MPI_UNSIGNED_LONG
— MPI_UNSIGNED_LONG_LONG
— MPI_COUNT
— MPI_CHAR
— MPI_DOUBLE

= Usable before MPI_Init and after MPI_Finalize
— Separate refcounted MPI_T_Init_thread/MPI_T_Finalize routines



APl Look & Feel

= Variables referenced by integer index

®= Dense index space

= Strictly grows

= Control var indices separate from perf var indices

= MPI_T Cvar_get num tells how many “right now”

= Usea get info call to ask about a specific var index
= “PMPI|_T_” for meta-tools ©



Code example: changing MPI_Allreduce
algorithm thresholds

MPIX_T_init_thread(MPI_THREAD_SINGLE, &provided);
MPI_Init(&argc, &argv);
MPIX_T_cvar_get_num(&num);
for (i = 0; 1 < num; ++1i) {
name_len = desc_len = STR_SZ;
MPIX_T_cvar_get_info(i, name, &name_len, &verb, &dtype, &enumtype, desc,
&desc_len, &bind, &scope);
if (@ == strncmp(name, "ALLREDUCE_SHORT_MSG_SIZE", STR_SZ)) {
MPIX_T_cvar_handle_alloc(i, NULL, &handle, &count);
assert(dtype == MPI_INT && count == 1);
MPIX_T_cvar_readChandle, &val);
val *= 2;
MPIX_T_cvar_writeChandle, &val);
MPIX_T_cvar_handle_free(&handle);
break;
ks

ks
if (1 == num) { printf("ERROR: could not find short msg param\n"); return 1; }

/* .. now do allreduce .. */
MPI_Finalize();
MPIX_T_finalize();

return 0;



Code example: sampling UQ length

MPIX_T_pvar_get_num(&num);
for (1 = 0; 1 < num; ++1) {
name_len = desc_len = STR_SZ;
MPIX_T_pvar_get_info(i, name, &name_len, &verb, &varclass, &dtype,
&enumtype, desc, &desc_len, &bind, &readonly,
&continuous, &atomic);
if (@ == strcmp(name, "unexpected_recvqg_length"))
ug_idx = 1;

}

MPIX_T_pvar_session_create(&session);
MPIX_T_pvar_handle_alloc(session, uqg_idx, NULL, &ug_handle, &count);
assert(count = 1);

MPI_Isend(buf, 1, MPI_INT, @, @, MPI_COMM_WORLD, &rreq);
MPIX_T_pvar_read(session, uqg_handle, &unexpected_qglen);
printf("unexpected_qlen=%d\n", unexpected_qlen);

MPIX_T_pvar_handle_free(session, &uqg_handle);
MPIX_T_pvar_session_free(&session);



MPICH2’s MPL_T Support

= All APl functions implemented (as “MPIX_T_*”)in 1.5b1

» All environment vars available via control variable
interfaces

= A few performance vars available, mainly for matching
gueue info

" Multithreading limitations

= Should hit downstream MPIs in 6-24 months (Intel MPI,
IBM MPIs [BG/Q and some others], Cray >=XE, MVAPICH2)

"= Need tool writer suggestions on most useful way to spend
time in this areal!!



