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Tool Interfaces in MPI

 Standardized interfaces for tools are essential

• Otherwise: hard to create portable tools

• Many ad-hoc solutions

 Positive example: PMPI

• Standardized interposition mechanism for MPI

• Required by the standard / Available everywhere

• Used by a large number of tools

 BUT: PMPI only covers part of what tools need

• Only intended as a first party interface

• Application level abstraction

• No insight into the MPI library

 Chance to change this in MPI-3
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Charter of the Tools Working Group

 Define interfaces for development tools

• Performance analysis, debuggers, correctness tools

• Insight into MPI library

• Understand interactions between MPI and application

• Determine application execution environment

 Motivation:

• Provide the basis for reliable and portable tools

• Provide new functionality not covered by PMPI

 All efforts are intended as an extension to PMPI

https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/MPI3Tools
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Current Activities

 MPI Performance Information Interface (MPIT)

 Documentation of the current MPIR interface

• Automatic Process Acquisition Interface

 Additional 3rd party interfaces

• New, scalable version of an APAI for MPI-2/3

• Debugger DLL naming

• Handle query interfaces

 Potential future items

• Extensions of the MPI_Pcontrol mechanism

• Piggybacking (together with the FT WG)

• Low level tracing option in MPIT
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MPIT: A Performance Information Interface for MPI

 Enable tools access to internal MPI information

• Information about MPI configuration

• Internal performance information

 Queue management

 Memory consumption

 Usage models

• Portable configuration tools

• PMPI tools with access to internal data

• Self monitoring applications & Autotuning

• Portable communication tool <-> application

• PAPI-C component
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Central Concepts

 An MPI implementation decides what to expose

• No restrictions on the implementation

• Flexibility to expose implementation specific details

• Option to provide production and debug versions

• Requirement: API to provide additional information 

in a portable way to convey some semantics

 Variables

• Data is conveyed through a set of variables

• Configuration and performance variables

• Separate type system to avoid initialization problems

 C bindings only / No Fortran bindings
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Three + One Sections

 Configuration variables

• Settings for runtime behavior (typical: env. vars.)

• Options to read / to set?

 Performance variables

• Internal performance information of the MPI library

• Virtualized start/stop counters

 Initialization, finalization, and type system

• Separate MPIT from MPI

• Separate sessions for performance variables

 Initially planed, but put aside: low-level tracing interface

• Log internal events to ring buffer
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Configuration Variables

 User controlled configuration mechanisms

• Often in the form of environment variables

• Tailor behavior to a machine or algorithm

• Typically barely documented, hard to understand

 First section of MPIT allows access to those variables

• Query all existing variables

• Query default and current settings

• Ideally: application specific control

 Sample use cases

• Tool to list all configuration options

• Document execution parameters

• Configuration and optimization all the way to autotuning
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Detecting Configuration Variables

 Two step process

• Find all available variables

• Query detailed information about a variable

 Step 1: Iterator approach to discover all variables

• Initialize iterator with a constant

• Pass the same iterator to repeating calls until done

• Each invocation returns one variable name

• Gather or search for variable names

 Step 2: Query additional information

• Detailed description

• Type and size information
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API Calls for Variable Detection

 MPIT_CONFIG_FIND

• IN/OUT: iterator

• OUT: name/namelen (string)

• IN: maxverbosity

 MPIT_CONFIG_QUERY

• IN: name

• OUT: datatype/count

• OUT: description/length (string)

• OUT: default value

• OUT: verbosity

 MPIT_CONFIG_VARS_CHANGED

• OUT: flag
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Verbosity Levels

 MPIs could return large number of variables

• Restrict the number of returned variables

• Categorize all variables based on use case

 Verbosity levels in increasing order

• MPIT_VERBOSITY_USER_BASIC

• MPIT_VERBOSITY_USER_DETAILED

• MPIT_VERBOSITY_TUNER_BASIC

• MPIT_VERBOSITY_TUNER_DETAILED

• MPIT_VERBOSITY_MPI_DEVELOPER

 Query call only return variables that at the requested 

verbosity level or lower
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String Interface

 Many MPIT calls rely on return strings

• Widely different lengths (name vs. descriptions)

 Currently not handled well in MPI

• Predefined maximal length for a string as a constant

• MPI returns actual length copied into buffer

• Not efficient for widely varying string sizes

• Danger of buffer overflows

 Proposal to use a different approach

• IN/OUT parameter for length to indicate size of buffer

• If zero is passed in, MPI returns actual size of string

• Automatic truncation if buffer is too small
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Reading and Writing Configuration Variables

 Once configuration variables are identified

• Ability to query configuration settings

• Document default/current settings

• Adjust configuration

• Opportunity f or auto tuning

 MPIT_CONIG_GET

• IN: name (string)

• OUT: buf (with type/size as provided by query call)

 MPIT_CONFIG_SET

• IN: name(string)

• OUT: buf (with type/size as provided by query call)
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Issues with Writing Configuration Variables

 Writing configuration variables has complications

• Access from multiple tools

• Changes may require global synchronization

• WG currently favors avoiding writes

• Strong concrete use cases?

 Options to avoid racing updates

• Request exclusive write access during MPIT_INIT

• Locking mechanisms

 Options to deal with globally synchronizing changes

• Make MPIT_CONFIG_SET a collective call

• Batching updates before applying them
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Configuration Variables API Overview

MPIT_CONFIG_FIND (iter,name,maxverbose)

Iterator to find all configuration variables

MPIT_CONFIG_QUERY (name,desc,type/size,default,verbose)

Query description and type of a variable

MPIT_CONFIG_VARS_CHANGED (flag)

Notification that the list has changed

MPIT_CONFIG_GET (name,buffer)

Read the value of a configuration variable

MPIT_CONFIG_SET (name,buffer)

Write a value to a configuration variable
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Performance Variables

 Access to MPI internal performance information

• Queue length, memory footprint, matching time, …

• MPI defines a set of variables that are available and 

updated by the MPI library at runtime

• MPIT can query (and control) these variables

 Sample use cases:

• Performance studies (find bottlenecks inside of MPI)

• Scalability studies (e.g., wrt. Memory)

 Same query process as with configuration variables

• Step 1: Iterator-based detection of available data

• Step 2: Ability to query information for each variable
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API for Variable Detection

 MPIT_PERFORMANCE_FIND

• IN/OUT: iterator

• OUT: name/namelen (string)

• IN: maxverbosity

 MPIT_PERFORMANCE_QUERY

• IN: name

• OUT: class of the performance variable / type of information

• OUT: datatype/count

• OUT: description/length (string)

• OUT: readonly (can not be reset)

• OUT: continuous (can not be started/stopped

• OUT: verbosity

 MPIT_PERFORMANCE_VARS_CHANGED

• OUT: flag
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Classes of Performance Variables

 MPIT_VARCLASS_STATE

• Snapshot of a discrete state (e.g., work/message/wait)

 MPIT_VARCLASS_UTILIZATION

• Utilization of a finite resource (e.g., buffer) (range 0.0-1.0)

 MPIT_VARCLASS_RESOURCE

 MPIT_VARCLASS_HIGHWATERMARK

 MPIT_VARCLASS_LOWWATERMARK

• Absolute utilization of a resource in MPI (current/high/low)

 MPIT_VARCLASS_COUNTER

• Monotonically increasing counter of a specific set of events (+1)

 MPIT_VARCLASS_AGGREGATE

• Aggregate value over time of a specific event parameter (+N)

 MPIT_VARCLASS_TIMER

• Aggregated time of a set of events
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Handle API for Performance Variables

 Performance variables require active handles

• Allocation and deallocation routines

• Easier for optimizations

• Access routines require handles 

 MPIT_PERFORMANCE_HANDLE_GET

• IN: name (string)

• OUT: handle

 MPIT_PERFORMANCE_HANDLE_FREE

• IN: handle 
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Counter API

 All counter access require a valid handle to the counter

 Start/Stop API

• MPIT_PERFORMANCE_START

• MPIT_PERFORMANCE_STOP

• IN: handle (MPIT_ALL_COUNTERS would also be OK)

 Read/Write/Reset API

• MPIT_PERFORMANCE_READ

• MPIT_PERFORMANCE_RESET

• MPIT_PERFORMANCE_READRESET

• MPIT_PERFORMANCE _WRITE

• IN: handle of counter

• IN: application buffer of correct type (for read & readreset)
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Performance Variables API Overview

MPIT_PERFORMANCE_FIND (iter,name,maxverbose)

Iterator to find all performance variables

MPIT_PERFORMANCE_QUERY (name,…)

Query description and type of a variable

MPIT_PERFORMANCE_VARS_CHANGED (flag)

Notification that the list has changed

MPIT_PERFORMANCE_HANDLE _GET(name,handle)

Request a handle for a variable

MPIT_PERFORMANCE_HANLDE_FREE (handle)

Release a handle
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Performance Variables API Overview (cont.)

MPIT_PERFORMANCE_START(handle)

Start recording data of one/all variables

MPIT_PERFORMANCE_STOP(handle)

Stop recording data of one/all variables

MPIT_PERFORMANCE_READ(handle,buffer)

MPIT_PERFORMANCE_READRESET(handle,buffer) 

MPIT_PERFORMANCE_RESET(handle)

Read and/or reset the value of a variables

MPIT_PERFORMANCE_WRITE(handle,buffer)

Set the value of a performance variable
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Hierarchy and Group Information

 Variables should be structured

• Semantic information describing variables

• Grouping and hierarchical relationships

• Needs to be provided by the MPI library

 Structured as hierarchical sets

• Variables are grouped in sets

• Sets are grouped in sets

 Routines to query set structure

• Iterator based

• Top-down and bottom-up options

• Additional textual descriptions
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Variable Taxonomy API

MPIT_TAXON_QUERY_SET_VARIABLES (iter,var,set,type)

Iterator to find all sets containing a variable

MPIT_TAXON_QUERY_VARIABLE_SETS (iter,var,set,type)

Iterator to find all variables contained in a set

MPIT_TAXON_QUERY_SET_SETS (iter,set,set)

Iterator to find all sets contained in a set

MPIT_TAXON_CHANGED (flag)

Taxonomy information has changed

MPIT_TAXON_DESCRIBE_SET(iset,desc)

Get additional information for a particular set
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Initialization of MPIT

 Initialization separate from MPI itself

• Not bound to MPI_Init / MPI_Finalize

• New calls: MPIT_Init/MPIT_Finalize (similar semantics)

• Can be run before Init and after Finalize

 Multiple, nested initialization

• Allow multiple tools to gather MPIT data

• Each usage requires separate Init/Finalize pair

• Usage counter

 Open questions:

• Is this sufficient for a clean co-existence of tools?

• Is it necessary to have access to argv/argc?
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Session Management

 How to enable multiple tools to gather performance data?

• Identify which tool requested which counters

• Provide consistent counter data

 Explicit sessions for performance counters

 MPIT_PERFORMANCE_SESSION_CREATE

• OUT: session handle

• Create session and return session specific handle

 MPIT_PERFORMANCE_SESSION_DESTROY

• IN: session handle

• End session and delete all handles

 Session argument for every MPIT_PERFORMANCE_ call
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MPIT Type System

 Type system separated from MPI

• Not guaranteed to be initialized before MPI_Init

• Complex datatypes unnecessary

 MPIT offers a set of basic types

• MPIT_BYTE, MPIT_SHORT, MPIT_LONG, MPIT_INT, 

MPIT_LONG_LONG, MPIT_CHAR, MPIT_FLOAT, MPIT_DOUBLE

• Each type has an equivalent MPI base type

 Enumeration types

• Fixed number of values (similar to enum)

• MPIT_TYPECLASS_GET

 Returns whether a type is an enumeration type or not
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MPIT Enumeration Types

 Each element of an enumeration carries semantics

• MPI would benefit from being able to get such semantics

• Query interface for descriptions of each element

 MPIT_ENUMTYPE_QUERY

• IN: type (must be an enumeration type)

• OUT: number (number of elements in the set)

• OUT: name of the enumeration type

 MPIT_ENUMITEM_QUERY

• IN: type (must be an enumeration type)

• IN: number (item number to query)

• OUT: description string
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Init/Finalize/Types API Overview

MPIT_INIT (instance)

Initialize the interface for use

MPIT_FINALIZE (instance)

Finish using this instance of MPIT

MPIT_PERFORMANCE_SESSION_CREATE (session)

Create a new session for performance variables

MPIT_PERFORMANCE_SESSION_DESTROY (session)

Delete a new session for performance variables

MPIT_TYPECLASS_GET (type, class)

Determine whether a type is an enumeration type

MPIT_ENUMTYPE (type, number, name)

MPIT_ENUMITEM (type, itemno, desc)

Query information about an enumeration type
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MPIT Status

 API has been presented to MPI forum before

• January meeting

• Feedback is being integrated

 Draft currently being reworked

• Multiple initialization/finalizations

• Adding session management

• Group and hierarchy information

 Timeline

• Final discussions in the next weeks

• Presentation to the MPI Forum at October Meeting

• First reading + votes after that
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Conclusions

 With MPI-3 we have the chance to get more tools interfaces

• Going beyond the successful PMPI interface

• For debugging, performance analysis, correctness tools

 MPIT: a new way of getting performance data from MPI

• Portable access to performance and configuration data

• Based on a query interface (MPI library independent)

• Support for interface virtualization

 Feedback on MPIT needed now

• Extensions discussions in the WG

• Presentation and buy in from MPI forum

• Need more feedback from the tools community!


