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Abstract

We present the Stack Trace Analysis Tool (STAT) to aid
in debugging extreme-scale applications. STAT can reduce
problem exploration spaces from thousands of processes to
a few by sampling stack traces to form process equivalence
classes, groups of processes exhibiting similar behavior.
We can then use full-featured debuggers on representatives
from these behavior classes for root cause analysis.

STAT scalably collects stack traces over a sampling pe-
riod to assemble a profile of the application’s behavior.
STAT routines process the samples to form a call graph pre-
fix tree that encodes common behavior classes over the pro-
gram’s process space and time. STAT leverages MRNet, an
infrastructure for tool control and data analyses, to over-
come scalability barriers faced by heavy-weight debuggers.

We present STAT’s design and an evaluation that shows
STAT gathers informative process traces from thousands of
processes with sub-second latencies, a significant improve-
ment over existing tools. Our case studies of production
codes verify that STAT supports the quick identification of
errors that were previously difficult to locate.

1. Introduction

Lawrence Livermore National Laboratory’s (LLNL’s)
BlueGene/L (BG/L) is the current benchmark for extremely
large scale systems with 131,072 processors, while other
supercomputer class systems like the Cray XT3 promise to
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operate with more than 60,000 processing cores. On the
most recent Top 500 list [1], 228 systems (45.6%) had over
1,024 processors and 18 systems had over 8,192. With gov-
ernment initiatives for petaflop scale systems in the United
States, Europe, Japan, and China, high-performance com-
puting (HPC) systems with 104 and 105 processors will be-
come common and 106 processor systems soon will exist.
Yet tools for debugging and analyzing programs, even at
existing scales, are non-existent. For example, on BG/L,
TotalView [12], arguably the best parallel debugger, takes
above one and two minutes to collect and merge stack traces
from 2048 and 4096 processes (4,096 is 3% of BG/L).

We target the identification and diagnosis of application
behavior, addressing questions like: what is the application
doing? Is it in a deadlock or infinite loop? As noted by
Roth, Arnold and Miller [25], developing a scalable diag-
nosis tool presents several challenges:

• Overwhelming channels of control: In most parallel
debuggers, a front-end process controls the interac-
tions between back-end tool daemon processes and the
debugged application’s processes. The front-end can
spend unacceptably long times managing the connec-
tions to the back-end daemons at large process counts.

• Large data volumes: As the number of debugged pro-
cesses increases, the volume of data becomes pro-
hibitively expensive to gather.

• Excessive data analysis overhead: Even if the de-
bug data can be gathered in acceptable time, the time
to process and to present it becomes excessive, often
causing users to resort to targeted print statements.

• Scalable presentation of results: Finally, presenting
a standard source code trace for individual processes
overwhelms the user and prevents quick anomaly de-
tection; alternative presentation paradigms that synthe-
size across the set of processes are essential.
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To address these challenges, we present the Stack Trace
Analysis Tool (STAT), which manages the scalable collec-
tion, analysis and visualization of stack trace profiles used
to depict application behavior. Specifically, we sample ap-
plication stack traces to form process equivalence classes,
groups of processes exhibiting similar behavior. Our expe-
rience shows that processes of parallel computations, even
erroneous ones, often can be grouped into few subsets, or
even a single subset, of processes with similar runtime be-
havior. Errors then can be detected through spatial differen-
tiation of the process space. However, unexpected behavior
often also has a temporal aspect – the behavior is erroneous
not because it occurs but because it persists. Our mecha-
nisms detect these equivalence classes quickly, allowing the
user to focus on a single representative of each.

Once we identify the equivalence classes, we present the
user a call graph prefix tree that distinguishes them visually.
We achieve scalability by leveraging the MRNet imple-
mentation [25] of the tree-based overlay network (TBŌN)
model, which exploits the logarithmic scaling properties
of trees for tool control and data analyses. Our scalable,
lightweight diagnosis approach can effectively reduce the
exploration space from thousands or even millions of pro-
cesses to a handful of behavior classes (and class repre-
sentatives). Once the problem space is reduced, we can
perform root cause analysis with a full-featured debugger,
since now it is only necessary that this debugger attach to a
small subset of the processes.

This paper details our four main contributions: In Sec-
tion 2, we present case studies of two production codes that
motivate our stack trace analysis approach. Our second con-
tribution is a simple, effective stack trace analysis technique
that reduces debug exploration spaces from thousands to a
handful of processes with sub-second latencies; we present
its details in Section 3. That section also details our third,
process group visualizations that can effectively guide users
to problem diagnoses by displaying both spatial and tempo-
ral relationships. Section 4 then describes the design, im-
plementation, and performance of our fourth contribution, a
scalable STAT prototype that implements our analysis and
visualization. In that section, we also apply the STAT to the
case studies and discuss future research. Related tools and
research are discussed in Section 5. Finally, we summarize
the expected impact of this work in Section 6.

2. Motivating Case Studies

To motivate the need for our technology, we consider
two large-scale debugging case studies. These studies in-
volve problems with elusive root causes in CCSM and Vi-
SUS, two parallel applications. In both cases, the defects
manifested themselves as hangs at relatively large scales
on LLNL machines. These case studies capture a current

manual approach for large-scale debugging, highlight its
effectiveness, and present its scalability limitations. They
demonstrate the need for better tools that automatically ap-
ply similar techniques much more quickly and scalably.

2.1. Pthread deadlock exposed by CCSM

The Community Climate System Model (CCSM) [7] is
a widely used application that comprises multiple climatic
simulators representing the atmosphere, ocean, sea ice and
land surface connected by a coupling module. For several
years, scientists have used CCSM and its components to im-
prove climate predictions. Recently, an LLNL climate sci-
entist reported intermittent hangs when running CCSM with
472 MPI tasks on the Thunder machine [17], an Itanium2
cluster with Quadrics Elan4 interconnect [24]. Several fac-
tors made the diagnostic process extremely challenging. For
instance, CCSM consists of multiple programs and multiple
data (MPMD). More importantly, the malfunction only oc-
curred at large scale and non-deterministically manifested
itself at apparently random program locations if at all.

During ten days of repeated attempts to reproduce the
problem in a more controlled environment, the hang only
occurred twice. Data analysis from the first reproduction of
the hang suggested a pthread deadlock in an MPI task. Ad-
ditional data from the second reproduction confirmed this.

Figure 1 depicts the manual data gathering and post-
mortem analysis that we applied during the first reproduc-
tion of the error. We attached to all 472 MPI tasks using
TotalView to gather several call graphs that capture the dy-
namic behavior of all tasks, an enhancement prototyped at
LLNL. TotalView’s call graph display provides a view into a
program’s spatial behavior (i.e., across job processes). The
left graph in Figure 1 shows the top of the agglomerated call
graph from all MPI tasks’ stack traces. This view reveals a
characteristic known by the user: the job has five first-level
process clusters depicted by the five sub-graphs rooted at
main: 96 ocean model tasks; 16 land model tasks; 16 ice
model tasks; 8 coupler tasks; and 336 atmosphere model
tasks. The center graph of Figure 1 suggests an interest-
ing behavior: the set of 336 atmosphere tasks form two
clusters rooted at the stepon function node. One cluster
consists of task 201; the other contains the remaining atmo-
spheric model tasks. A comparison of the details of task 201
and task 200, an arbitrary representative of the second clus-
ter, indicates a possible deadlock in task 201. Specifically,
task 201 reentered the pthread mutex lock function in
the ELAN4 library after an asynchronous interrupt due to a
UNIX signal handler invocation, as indicated by the right
graph in Figure 1. As a consequence, the other tasks were
stalled at MPI Waitall. Multiple stack trace snapshots
taken over time for task 201 were almost identical, further
supporting the deadlock theory. Direct support for time-



_start

__libc_start_main

(0-471)

main

(0-471)

pop

(40-135)

program_csm

(24-39)

icemodel

(8-23)

cpl

(0-7)

cam

(136-471)

step_mo...

(40-135)

driver

(24-39)

ice_co...

(8-23)

 ... stepon

(136-471)

 ...clm_cs...

(24-39)

 ... ... 

 main

 cam

(136-471)

 stepon

(136-471)

physpkg

(201)

 dp_coupl...

(136-200,202-471)

 phys_buf...

(201)

  ...

 mod_com...

(136-200,202-471)

  ... 

pthread_mutex_lock (201)

elan4_signal_handler

(201)

__lll_lock...

(201)

elan4_remove_zone

(201)

   ... __kernel_sys...

(201)

   ...

elan4_add_zone

(201)

Figure 1. Manual debugging of the first CCSM hang at 472 MPI tasks

varying stack traces would have simplified this verification.
This high-level analysis aided our second round of de-

bugging during which we immediately noticed that two
tasks formed a similar anomalous cluster. TotalView
analysis revealed that the anomalous tasks were attempt-
ing to re-lock a mutex. Further, the mutex type was
PTHREAD MUTEX NORMAL, which results in a deadlock
under Linux. We theorize that Quadrics QsNetII software’s
internal interconnect management raised a UNIX signal.
Regardless, it is clear that the elan4 remove zone func-
tion must be made signal safe.

2.2. Integer overflow in ViSUS

Visualization Streams for Ultimate Scalability (ViSUS)
is a research project that develops data streaming techniques
for progressive processing and visualization of large scien-
tific data sets [23]. About a year ago, an LLNL developer
reported a hang during a scaling test on BG/L. The hang
occurred deterministically at scales of at least 8192 tasks.
Since this was beyond the capability of any available de-
bugger, the developer was forced to debug using print state-
ments. Ad-hoc parsers were written to process the volumi-
nous output; changes to the printed output demanded parser
changes. Ultimately, this strategy proved ineffective.

Eventually, a more scalable version of TotalView became
available. Even so, the scale continued to pose a challenge.
Debugging 8,192 tasks was twice TotalView’s warranted

upper limit on BG/L. However, careful provisioning and the
avoidance of non-scalable operations allowed the tool to be
used at requisite scales. Once a debugging tool was avail-
able, diagnosis of the root cause of the hang was relatively
simple. The debugger allowed the discovery of an uninten-
tionally formed infinite loop due to 32-bit integer overflow.

The case studies show that some program errors only
show up beyond certain scales and that errors may be non-
deterministic and difficult to reproduce. Stack traces can
provide useful insight, but current tools either do not pro-
vide enough information or cannot run effectively at the req-
uisite scale. STAT addresses these deficiencies with a scal-
able, lightweight approach for collecting, analyzing, and
rendering the spatial and temporal information necessary to
reduce the problem to a manageable subset of processes.

3. Scalable Stack Trace Analysis

Motivated by debugging practices as in Section 2, we
propose an automated, lightweight technique for scalably
reducing problem exploration spaces. Our approach ana-
lyzes process stack traces to discover process equivalence
classes – processes exhibiting similar behavior based on ex-
ecuting functions. This approach facilitates scalable data
analysis as well as scalable visualizations that guide the user
in the diagnosis process. This section details our stack trace
analysis approach. We discuss existing techniques for pro-
cessing stack traces from distributed applications and then



expand these techniques into ours, which uses traces col-
lected over time and (process) space to profile applications.

For this discussion, we introduce a simple MPI program
that we use as the target of our problem diagnosis. In this
program, process ranks are organized into a virtual ring
within which each process performs an asynchronous re-
ceive from its predecessor in the ring and an asynchronous
send to its successor. Each process then blocks for the I/O
requests to complete (via MPI Waitall). A whole pro-
gram synchronization point (MPI Barrier) follows the
ring communication. The code includes a bug that perma-
nently blocks one task before its send operation.
Singleton Stack Traces Figure 2 illustrates the fundamen-
tal data object in our analysis, a stack trace, which depicts
the caller/callee relationships of the functions being exe-
cuted by a process. In our model, we distinguish functions
by invocation paths; in other words, if the same function
is invoked multiple times via different call paths, it occurs
multiple times in our stack trace. We believe that functions
invoked via different call paths (including recursively) may
demonstrate different application semantics to the user that
would not be visible without this distinction. Also, distinc-
tion by invocation means that merged stack traces result in
a tree, which is easier to analyze both algorithmically and
manually than a more general directed graph. Such single-
ton stack traces are supported by most if not all debuggers,
typically using a textual representation. Singleton traces do
not allow effective evaluation large applications: clearly, a
thousand processes would generate a thousand stack traces
– beyond the threshold of human comprehensibility.
2D-Trace/Space Analysis To address the deficiency of
singleton traces, tools like TotalView and Prism support
what we call a 2D-Trace/Space analysis, merging a single
stack trace from each application process into a call graph
prefix tree that maps stack traces into the application pro-
cesses’ space. The presumption, as well as the common
reality, is that there will be significant overlap amongst the
individual stack traces such that many processes will merge
into a relatively small call graph prefix tree. This data ob-
ject is illustrated in Figure 3, which compares our call graph
prefix tree to TotalView’s call graph. To help users quickly
focus on a small number of individual processes, STAT ana-
lyzes the traces to depict process equivalence classes – pro-
cesses in the same class are shown in the same color. In
contrast, TotalView presents this information using a call

_start __libc_start_main main foo

Figure 2. A stack trace showing caller/callee
relationships of executing functions.

graph that does not distinguish the invocation path for each
function leading to a general directed graph that cannot be
as easily partitioned into equivalence classes.
2D-Trace/Time Analysis While our 2D-Trace/Space call
graph prefix trees are well-suited for analyzing static sce-
narios like examining core dumps, they do not include the
temporal information necessary to help answer questions
about application progress, deadlock/livelock conditions, or
performance. To address these issues, we introduce 2D-
Trace/Time analyses: we merge and analyze a sequence of
stack traces from a single process collected over a sampling
interval. Figure 4(a) shows how this analysis renders a pro-
file of a process’s behavior over time. Allowing the user
to specify the length of the sampling period in terms of
the number of samples to collect and the interval between
samples, STAT allows the user to control the granularity at
which traces are sampled and thus tool overhead as well as
the coverage of the collected profile.
3D-Trace/Space/Time Analysis 2D-Trace/Time analysis
allows a user to profile an individual process quickly,
just like singleton stack traces; however, it is an inef-
fective method for understanding the collective behavior
of many thousands of processes. The solution is a 3D-
Trace/Space/Time analysis that combines both previous
analysis techniques: we merge and analyze sequences of
stack traces from multiple processes to assemble a global
application profile. As seen in Figure 4(b), the identified
process equivalence classes distinguish the sets of process
behaviors exhibited by the application.

Our visualizations are influenced by Miller’s criteria for
good parallel program visualization [19]. We briefly discuss
how the visualization results of our 3D-Trace/Space/Time
analysis observe some of these guiding principles:

• Visualizations should guide, not rationalize: By pre-
senting a profile of the applications behavior for the
sampling period and identifying equivalence classes of
similar process behavior, the user quickly can extract
new knowledge about program behavior.

• Scalability is crucial: For thousands of processes, it
would not be scalable to display call graphs for each
process. Instead, we merge these graphs into a single,
compact tree. Further, as discussed below, the use of
color to distinguish classes of process behavior helps
the user to navigate complicated graphs.

• Color should inform, not entertain: We use color to to
distinguish process behavior classes. Nodes of iden-
tical color represent stack frames from groups of pro-
cesses executing the same instructions in the program.

• Visualizations should provide meaningful labels: Node
labels identify executing functions, and edge labels
identify the number (and set) of processes traversing
that edge. Together the labels show single process be-
havior or a view of dominant global behavior.
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4. STAT: The Stack Trace Analysis Tool

We describe STAT’s scalable implementation of 3D-
Trace/Space/Time analysis and present its performance as
well as its application to Section 2’s case studies. We also
discuss scalable visualization and future enhancements.

4.1. STAT design and implementation

STAT is composed of three main components: the tool
front-end, the tool daemons, and the stack trace analysis
routine. The front-end controls the collection of stack trace
samples by the tool daemons, and the collected traces are
processed by our stack trace analysis routine. The front-
end renders the result, a single call graph prefix tree. STAT
utilizes MRNet [25], a TBŌN-based multicast/reduction
network infrastructure from the University of Wisconsin.
A TBŌN (tree-based overlay network) is a network of
hierarchically-organized processes that exploits the loga-
rithmic scaling properties of trees to provide scalable appli-
cation control, data collection, and data analyses. The STAT
front-end and back-ends communicate via the MRNet pro-
cess tree. MRNet filters are used to implement the stack
trace analysis algorithm, which parent nodes executes on

input from children nodes. Back-ends merge local samples,
which the TBŌN combines into a whole-program view.

The front-end, STAT’s driver, first instantiates the MR-
Net tree and tool daemon back-ends. Once the TBŌN is
established, the front-end, via the MRNet API, dynamically
loads the TBŌN processes with STAT’s custom filter, which
processes the collected stack trace samples. The front-end
then instructs each daemon to attach to the application pro-
cesses local to that daemon’s compute node. After the at-
tach phase, the front-end instructs each daemon to sample
the application’s stack traces for a period defined by a count
and sampling interval. Finally, the front-end color-codes
the process equivalence classes in the call graph prefix tree
comprised of the collected samples and exports the graph as
an AT&T dot format file.

Each STAT back-end has the following capabilities: at-
tach to application processes; sample process stack traces;
merge/analyze collected samples; and propagate analysis
results up the tree. The Dyninst library [8] allows us to de-
bug unmodified applications. STAT back-ends use the core
function described below to process locally collected sam-
ples before propagating results through the TBŌN.

The STAT filter inputs a vector of packets, one from each
child of the executing internal node, and outputs a single
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packet. Each STAT packet encapsulates a call graph prefix
tree. The core function of the filter inputs two call graph
prefix trees and outputs a single, merged call graph prefix
tree that is further propagated through the TBŌN to yield a
single global tree at the front-end.

4.2. Performance evaluation

We test STAT’s performance on Thunder, a 1,024 node
cluster at LLNL. Each node has four 1.4 GHz Intel Itanium2
CPUs and 8 GB of RAM connected by a Quadrics QsNetII

interconnect using the Quadrics Elan 4 network processor.
For our experiments, we debug the MPI message ring

program described in Section 3 at various scales. The appli-
cation is run on an allocation with four MPI tasks per node.
For debugging, STAT daemons must be co-located with the
application processes. We place one tool daemon process
on each node of the application’s allocation: one tool dae-
mon debugs four application processes. The front-end and
internal nodes are placed on a separate allocation.

We evaluate STAT’s performance by measuring the la-
tency from the front-end’s broadcast to collect stack trace
samples until the global call graph prefix tree is available at
the front-end. We omit the sampling duration since this is
determined by the number of samples and sampling interval
as chosen by the user. For our experiments, we collected 10
samples from each process with a 1 second interval between
samples. Dyninst micro-benchmark experiments show that
stack trace sampling costs can vary from thousandths to

tenths of a second based on several factors including the
platform, the target application’s characteristics (e.g. the li-
braries it includes), and what the target application is doing
at the instant the sample is requested.

We compare the performance of 1-deep trees, the stan-
dard tool organization in which the front-end is directly con-
nected to the tool-daemons, and 2-deep trees with an inter-
mediate level of internal nodes1. The 2-deep trees are com-
pletely balanced: all parent processes have the same num-
ber of children. The results of our experiments debugging
up to 3844 application processes are shown in Figure 5. As
the size of the debugged application increases, the latency
of the 1-deep tree grows quadratically with the number of
processes being debugged. Latencies in the 2-deep trees in-
crease slowly due to the controlled fan-out.

4.3. STAT on real applications

We apply STAT to two real large-scale debugging cases
presented in Section 2. The results of our empirical eval-
uation demonstrate that our tool provides insights into dy-
namic behavior of real anomalies.

4.3.1. Applying STAT to ViSUS

We apply the tool to ViSUS after reintroducing the bug
into the code. We consider a reduced scale, 162 tasks, based

1As scale increases, it is natural to increase tree depth to maintain scal-
able performance. For our experiments, 2-deep trees were sufficient.



Figure 5. STAT Performance. 1-deep trees directly connect the tool front-end to the back-end daemons.
2-deep trees have an intermediate level of TBŌN processes.

on a subsequently found reproduction of the hang at much
lower scales. When the program hangs, we attach STAT all
tasks and sample ten stack traces with an interval of 100
milliseconds between samples.

Figure 6 shows a portion of the STAT graph captur-
ing both spatial and temporal behavior. The figure indi-
cates that all tasks behave homogeneously before enter-
ing the composite function, which invokes three func-
tions: handle src, which produces task-specific local
data; handle cmp, which composites the local data into
global data; and handle mux, which writes the global
data to a file. A node coloring scheme then reveals the
first-level cluster refinement at this function, yielding three
sub-clusters. The label of each link forked off of the
composite node shows the rank membership for each
sub-cluster: a majority of tasks are producing local data,
while only 14 tasks are compositing them and just one task,
rank 1, is both compositing local data and writing the global
data to disk. This cluster refinement correctly uncovers an
important characteristic of ViSUS: all tasks form a virtual
tree network to composite local data efficiently into global
data. While all tasks produce local data, only a small subset
composites them. Once all local data are composited, only
the root task writes to the file. The graph shows that the
anomaly does not perturb this normal cluster.

The removed bottom of the STAT graph indicates that
only those member tasks of the second cluster carry out
MPI communication calls. Unlike the CCSM case, how-
ever, examining further refinements of that cluster does not
identify outlier tasks that would be a likely root cause of the
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Figure 6. 3D-Trace/Space/Time ViSUS graph

hang. The graph naturally guides our attention rather to the
composite function next. Examining a small code sec-
tion of the composite function provides an insight into a
possible infinite loop: the three function invocations occur
in a while loop. For further root cause analysis, we pick
three representative processes, rank 0, rank 1 and rank 2,
one from each cluster. We then probe those tasks with a full-
featured debugger and quickly locate a 32 bit integer over-
flow using debugging features like lock-stepping and eval-
uation points. The overflow prevented the handle src
function from returning a loop terminating code.



4.3.2. Applying STAT to CCSM

We apply STAT to CCSM when it hangs with the orig-
inal configuration. STAT’s temporal behavior analysis ef-
fectively guides detection of the deadlock condition in an
MPI task. Figure 7 is the graph capturing both spatial
and temporal aspects of the program. The graph depicts
that the offending task does not make progress over the
sample period, after separating itself from the other tasks
at the parutilitiesmodule mp parexchagevec
function. For example, its call path does not contain any
function node that has more than one immediate child node.

4.4. Scalable visualization

Even though our stack trace analysis results in drastically
reduced graphs compared to visualizing all nodes’ stack
traces individually, the previous examples have shown that
even those reduced graphs can be large and complex. In
most cases, however, the detection of equivalence classes
and their coloring coding provides enough structure in the
display. If this is insufficient, we can further reduce the
complexity of the presented graphs without losing detailed
information. One way to reduce the size of the displayed
graphs is to provide optional pruning. With this method, we
will default to displaying an easily comprehensible repre-
sentation, the pruned graph. However, we will still allow
users to expand pruned segments on demand to analyze rel-
evant components more deeply.

The use of trees instead of directed graphs in STAT im-
plicitly leads to the generation of hierarchical equivalence
classes: each subtree of the complete stack trace informa-
tion can be seen as one equivalence class, which can then
be further subdivided into sub classes represented by lower
branches in the tree. This property provides a natural ab-
straction for pruning larger trees since any pruning of a sub-
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Figure 7. 3D-Trace/Space/Time CCSM graph

tree results in aggregating finer-grain equivalence classes
into a more coarse grain one, but will not destroy the ab-
straction produced by STAT. This mechanism therefore pro-
vides a true level of detail selection mechanism without the
possibility of misguiding the user at higher levels of abstrac-
tion. A similar approach based on general directed graphs
would require complex, expensive node coloring schemes.

An additional pruning criteria for call graphs is any tran-
sition from the user’s application to library functions that
are normally opaque to the user. For example, we could
prune the subgraphs of any nodes that represent MPI rou-
tines. As the above examples demonstrate, this will signifi-
cantly reduce the size of the graphs in many cases since call
graph variations are likely to occur within the MPI library.

Since we have shown that the errors often occur after or
across these tranisitions, this pruning criteria would empha-
size the need not only to reduce the graph but also to expand
it on demand. This functionality is easily supported since
we would apply our reduction operations when the data is
displayed. The collected and stored data would still include
the full merged stack trace information. Thus, we would ex-
tend the idea of pruning further to let the user dynamically
prune the tree at any level. At first the user will only see a
very high-level view of a tree (for example, a fixed number
of branches starting at the root node or stopping at any li-
brary transitions) and can then interactively select to expand
any existing branch. Such an interactive selection of zoom
detail can be supported within a traditional graph viewer or
through a file browser like display or other hierarchical rep-
resentations supporting dynamic expansion/contraction.

A second major source for complexity in the graph visu-
alization is the list of process ranks associated with each
edge. Especially for large node counts, these lists can
get long and fragmented and hence difficult to interpret.
Since the concrete list is often not required to obtain a first
overview, we suggest replacing the textual representation
with a graphical one, for example, in the form of a bar code
or digital fingerprint. This will allow users to identify and
compare node sets quickly and visually without having to
compare individual rank numbers. On-demand, such repre-
sentations can be expanded to the actual rank lists.

4.5. Future enhancements

Our current tool provides a powerful abstraction of the
state of a parallel application, but the actual problem diag-
nosis or anomaly detection is still up to the user of the tool.
As a next step, we plan to integrate the tool with analysis
techniques to automate the process of problem identifica-
tion. For example, statistical clustering of call trees from all
ranks can help identify processes with distinct and poten-
tially anomalous behavior. Similarly, we can target perfor-
mance problems like load imbalances or excessive waits.



To further support automatic analysis, we plan to extend
our tool to compare data from multiple runs. This will add
an additional dimension to our stack traces and, combined
with a manual tagging of runs, for instance, as good or erro-
neous, provide an easy way to find the cause of anomalies.

5 Related Work

Our work focuses on strategies for diagnosing problems
in large parallel applications. Much research in this area
exists. In this section, we present related work in three cate-
gories: parallel debuggers; problem diagnosis via data anal-
ysis; and automated debugging techniques.

In the context of the Paradyn performance tool [20], Roth
and Miller have studied the use of merging graph struc-
tures for efficient performance diagnosis. In their deep start
diagnosis strategy [26], they fold stack trace sample trees
collected from multiple processes to guide their problem
search. They also implement a sub-graph folding algorithm
that, like STAT, uses MRNet for scalable computation [27].

Over the years, many parallel debuggers have targeted a
variety of programming languages and hardware platforms
including Fx2 [2], Ladebug [5], Mantis [18], mpC [4],
p2d2 [13], pdbx [14], Prism [28], and TotalView [12]. All at
least have the capability of viewing individual process stack
traces. Both the Prism and TotalView debuggers aggre-
gate individual process stack traces into a single call graph
tree. However, neither tool accommodates the time-varying
views of call graphs necessary to answer questions about the
programs behavior over time. Both also use a non-scalable,
single level hierarchy with the tool front-end directly con-
nected to the back-end processes. While Ladebug does not
support aggregated stack traces, it does use a TBŌN and
data aggregation for responsive tool control and data collec-
tion. Mantis supports a colored process grid visualization in
which node colors reflect process status, for example, run-
ning, stopped, error. The fully-functional nature of these
debuggers is partially what renders them non-scalable. We
view STAT as complementary to such tools: we reduce the
exploration space to scales heavy-weight tools can tolerate.

Several projects have investigated the use of statistical
methods for automated application analysis. In the work
of Dickenson et al [11], they collect call profiles from pro-
gram runs and use several distance metrics to cluster simi-
lar profiles. Profiles from each cluster are analyzed to de-
termine whether or not the cluster represents an anomaly.
Yuan et al [30] apply a supervised classification algorithm
to classify system call traces based on their similarity to pre-
viously analyzed traces with already diagnosed problems.
Magpie [6] uses a string-edit distance metric, a measure
of two string’s difference, to cluster events. Events that
do not belong to a sufficiently large cluster are considered
anomalous. Mirgorodskiy et al [21] also use distance met-

rics to categorize data from control-flow traces, identify-
ing traces that substantially differ from the others. They
perform root cause diagnosis by, for instance, identifying
which call path contributed most to the profile dissimilar-
ity. Pinpoint [9] uses both clustering and decision trees
on client-server traces to correlate request failures with any
failures occurring in the components used to service the re-
quests. Finally, Ahn and Vetter use multivariate statistics to
cluster large performance data sets for scalable analysis and
visualization [3]. Like our stack trace analysis, these ap-
proaches analyze collected run-time data to identify anoma-
lies. These approaches are designed to run post mortem –
after the application has exited. Our analysis is light-weight
making it scalable and suitable for diagnosing program be-
havior as the application is running.

Several researchers have explored techniques to locate
specific types of errors automatically. Umpire [29], Mar-
mot [16], and the Intel Message Checker [10] trace MPI
executions and and detect violations of the MPI standard,
including resource leaks, deadlocks and type mismatches.
Intel Thread Checker (formerly Assure) [15] simulates
OpenMP directives and automatically identifies race con-
ditions and other common OpenMP errors. Finally, several
tools, including Valgrind [22] and TotalView [12] automat-
ically detect memory usage errors including leaks and stray
writes. These tools provide precise information about the
locations of coding errors costing significant overhead; they
are not targeted to production, large scale jobs but rather
as final step in the development process. Rather than ex-
pensive techniques that locate certain classes of errors pre-
cisely, we explore fast, scalable, automated techniques to
find problem code regions and tasks.

6 Conclusion

We have presented the design and implementation of
STAT, the scalable Stack Trace Analysis Tool. This tool
addresses an issue that is becoming increasingly important
for large scale parallel platforms: how do we diagnosis pro-
gram errors that emerge only under production runs at very
high processor counts. Specifically, we provide a method
for assembling stack traces across the processes of a par-
allel job into a 3D-Trace/Space/Time diagram. While pre-
vious tools have focused on 2D-Trace/Space analyses, we
analyze samples collected over time to distinguish behavior
that is erroneous not because it exists, but because it per-
sists. This diagram captures the hierarchical equivalence
classes of execution paths across those processes, allowing
users to focus on subsets of tasks and code regions quickly.

STAT builds upon the scalable MRNet tool infrastruc-
ture. STAT’s tree of intermediate tool processes assembles
3D-Trace/Space/Time diagrams in a highly scalable man-
ner. Our performance results demonstrate that STAT signif-



icantly improves our ability to examine stack traces across a
parallel job: it achieves sub-second latencies at thousands of
processes, compared to the multiple seconds with existing
tools. This performance is critical since the current high la-
tencies are sufficient to make most programmers give up for
all but the most mission critical tasks. More importantly, we
have presented several real debugging case studies showing
that STAT can improve substantially our ability to locate the
root causes of these errors quickly and accurately.
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