
Application Insight Through Performance Modeling

Gabriel Marin
Department of Computer Science

Rice University
Houston, TX 77005
mgabi@cs.rice.edu

John Mellor-Crummey
Department of Computer Science

Rice University
Houston, TX 77005
johnmc@cs.rice.edu

Abstract

Tuning the performance of applications requires under-
standing the interactions between code and target archi-
tecture. This paper describes a performance modeling ap-
proach that not only makes accurate predictions about the
behavior of an application on a target architecture for dif-
ferent inputs, but also provides guidance for tuning by high-
lighting the factors that limit performance in each section of
a program. We introduce two new performance metrics that
estimate the maximum gain expected from tuning different
parts of an application, or from increasing the number of
machine resources. We show how this metric helped iden-
tify a bottleneck in the ASCI Sweep3D benchmark where the
lack of instruction-level parallelism limited performance.
Transforming one frequently executed loop to ameliorate
this bottleneck improved performance by 16% on an Ita-
nium2 system.

1 Introduction

Accurate performance models of applications can be
used to understand how their performance scales under dif-
ferent conditions, pinpoint sources of inefficiency, identify
opportunities for tuning, guide mapping of application com-
ponents to a collection of heterogeneous resources, or pro-
vide input into the design of architectures. Building accu-
rate models of application performance is difficult because
of the large number of variables that affect the execution
time, including algorithmic factors, program implementa-
tion details, architecture characteristics, and input data pa-
rameters. Moreover, these factors interact in complex ways,
making it difficult to understand what limits the perfor-
mance for each section of the code. Hardware counters,
present on all modern microprocessors, provide a low over-
head solution for observing resource utilization during an
application’s execution. While they can provide insight on
how resources (e.g., time) are being expended for a given

input size and target architecture, they cannot provide esti-
mates of how execution time will change if we change the
problem size or the type and number of resources in the
architecture. Also, they cannot directly pinpoint program
sections that will benefit most from code transformations.

In this paper, we describe an approach for measuring and
modeling application characteristics independent of the un-
derlying architecture. We use the resulting models to under-
stand features of the application that limit its performance
and we explore how the application maps onto a target ar-
chitecture to identify resources that limit performance due
to a high level of contention. We show that our application-
centric modeling technique can provide insight into appli-
cations that hardware counter based tools alone cannot.

Our goal is to answer questions about an application’s
performance. Is the program slow because of a costly algo-
rithm? Does the program have insufficient instruction-level
parallelism? Is there a mismatch between the type and num-
ber of resources provided on the target machine and the type
of resources required by the most frequently executed loops
of the application? Is the application bandwidth starved, or
is it limited by the memory latency? How much memory
hierarchy bandwidth is needed to fully utilize the execution
units if we could perfectly prefetch all data?

We introduce two new performance metrics that enable
us to pinpoint sections of the application that have insuffi-
cient instruction-level parallelism or poor memory balance,
and sections that have a high level of instruction parallelism
and might benefit from an attached accelerator (e.g., an
FGPA). In addition, our modeling technique may be used
to inform the design process for future architectures about
which high-level architectural changes would most benefit
the application.

The rest of the paper is organized as follows. Section 2
introduces our modeling framework and motivates our de-
sign decisions. Section 3 describes our approach for gaining
insight into application performance bottlenecks. Section 4
presents case studies in which we use our models to analyze
the ASCI Sweep3D benchmark and LANL’s Parallel Ocean

651-4244-1338-6/07/$25.00/©2007 IEEE

Object

Code

Binary

Analyzer

•Control flow graph

•Loop nesting

•Instruction
dependences

•BB instruction mix

Static Analysis

Binary

Instrumenter

Instrumented

Code

Execute

• BB & Edge Counts

• Memory Reuse Distance

• Communication Volume & Frequency

Dynamic

Analysis

Architecture

neutral model

Scalable Models

Modeling

Program

Evaluate

IR code

Architecture

Description

Performance

Prediction

for Target

Architecture

Cross Architecture Models

Modulo

Scheduler

Figure 1. Modeling framework diagram.

Program (POP). Section 5 identifies related work in the area
of performance modeling and prediction. Section 6 presents
our conclusions and plans for future work.

2 The Modeling Framework

We use static and dynamic analysis of binaries as the
basis for performance modeling and prediction. Because
we analyze and instrument object code, our tools are lan-
guage independent and naturally handle applications with
modules written in different languages. In addition, binary
analysis works equally well on optimized code; we do not
need our own optimizer to predict performance of optimized
code. Finally, it is easier to predict performance of a mix of
machine instructions with predictable latencies than to es-
timate the execution cost of high-level language constructs.
Working on binaries, however, has its own drawbacks. First,
the tool’s portability is limited by the binary analysis library
it uses. This is mitigated by the fact that we measure and
model application characteristics that are machine indepen-
dent, and then we use these models to predict performance
on arbitrary RISC-like architectures. Second, certain high-
level information is lost when the source code is translated
to low-level machine code, while other information requires
more thorough analysis to extract.

Figure 1 shows an overview of our modeling framework.
There are four main functional components: static analy-
sis, dynamic analysis, an architecture neutral modeling tool,
and a modulo-scheduler for cross-architecture performance
prediction. Most of the components of our modeling frame-
work are described in detail elsewhere [9]. In section 3,
we describe our modulo-scheduler and other extensions that
provide insight into applications and reveal performance
bottlenecks. To provide context for that work, we briefly
describe the components of our framework.

The static analysis subsystem shown in Figure 1 is not
a standalone application but rather a component of every
program in our toolkit. We employ static analysis to re-
cover high-level program information from application bi-

naries, including reconstruction of the control flow graph
(CFG) for each routine and identifying natural loops and
loop nesting in each CFG using interval analysis [15]. Other
uses of static analysis involve understanding and modeling
aspects of the application that are important for its perfor-
mance but are independent of execution characteristics, e.g.,
the instruction mix in loop bodies, as well as dependencies
between instructions that limit instruction-level parallelism
(ILP). Understanding memory dependencies within loops
from machine code is a particularly difficult problem that
we tackle by computing symbolic formulae that character-
ize the access pattern of each memory reference, a process
that is described in more detail elsewhere [10].

Often, many important characteristics of an application’s
execution behavior can only be understood accurately by
measuring them at run time using dynamic analysis. Our
toolkit uses binary rewriting to augment an application to
monitor and log information during execution. To under-
stand the nature and volume of computation performed by
an application for a particular program input, we collect his-
tograms indicating the frequency with which particular con-
trol flow graph edges are traversed at run time. To under-
stand an application’s memory access patterns, we collect
histograms of the reuse distance [4]—the number of unique
memory locations accessed between a pair of accesses to
a particular data item—observed by each load or store in-
struction. These measures quantify key characteristics of
an application’s behavior upon which performance depends.
By design, these measures are independent of architectural
details and can be used to predict the behavior of a program
on an arbitrary RISC-like architecture.

Collecting dynamic data for large problem sizes can be
expensive. To avoid this problem, we construct scalable
models of dynamic application characteristics. These mod-
els, parameterized by problem size or other input parame-
ters, enable us to predict application behavior and perfor-
mance for data sizes that we have not measured [9, 10].

To compute cross-architecture performance predictions,
we combine information gathered from static analysis and
dynamic measurements of execution behavior. We then map
this information onto an architectural model constructed
from a machine description file. This process has two steps.
First, we predict the program’s memory hierarchy behavior
by translating memory reuse distance models into predic-
tions of cache miss counts for each level of the memory hi-
erarchy on the target architecture. We predict capacity and
compulsory misses directly from the reuse distance mod-
els and estimate conflict misses using a probabilistic strat-
egy [10]. Second, we predict computation costs by identi-
fying paths in each routine’s CFG and their associated fre-
quencies, and mapping instructions along these paths onto
the target architecture’s resources using a modulo instruc-
tion scheduler. This process is described in section 3.1.

66

3 Understanding Performance Bottlenecks

In our previous work [9, 10] we validated our approach
by successfully predicting memory hierarchy behavior and
execution time of several scientific codes, including the
ASCI Sweep3D benchmark [1] and several NAS bench-
marks, on different architectures for a large range of input
sizes. In this section, we show how models can provide in-
sight into applications and reveal performance bottlenecks.
The cornerstone of this analysis is our modulo-scheduler,
which maps a sequence of generic instructions with their
corresponding data dependencies to a collection of hetero-
geneous resources, in accordance with a mapping function
between instructions and resources, and with the objective
function of minimizing the schedule length. The next sec-
tions describe the functionality and design of our scheduler.

3.1 Scheduler front end

To understand the cost of a program’s computation on a
target architecture, we start by identifying paths in the CFG
of each routine and computing their associated frequencies
from basic block and edge frequency counts collected dur-
ing dynamic analysis. For nested loops, we work from the
inside out, each loop being represented by a special Inner-
Loop instruction in its parent scope. Once a loop is sched-
uled, we also compute information about its registers that
are live across the loop boundaries. Such information is
used to compute the proper register dependencies between
a loop and instructions in its parent scope. In addition, in-
ner loops and function calls act as fence instructions in our
schedules; they prevent instruction reordering across them.

As seen in Figure 1, the scheduler works on an interme-
diate representation (IR) of the code. We found the most
flexible format for the IR is a dependence graph, in which
nodes represent generic instructions and edges represent de-
pendences between instructions. Figure 2(b) shows the de-
pendence graph for the innermost loop of routinecompute
shown in Figure 2(a).1 Using such an intermediate repre-
sentation has two main benefits. First, it isolates the sched-
uler from the binary analysis library underneath, making it
portable to a different run-time system. We need to provide
only a front end that translates machine code into the IR by
identifying all schedule dependencies among instructions.
Second, the scheduler can be used to analyze sequences that
include higher-level operations (i.e. FFT or dot product op-
erations) if the machine description provides units which
can execute such instructions, and if the front end recog-
nizes such operations and includes them as nodes in the IR.

In our implementation, we defined a set of generic RISC
instruction classes and our front-end translates SPARC ma-

1To reduce clutter, the graph does not include the loop control arith-
metic and the loop branch instruction.

void
compute(int size, double* A, double c1){
int i, j;
for (j=0 ; j<size ; ++j)

for (i=0 ; i<size-1 ; i+=1){
A[(i+1)*size+j] =

A[(i+1)*size+j] +
c1 * A[(i)*size+j];

}
}

(a)

(b) (c)

Figure 2. (a) Sample source code; (b) IR for
the inner most loop; (c) IR after replacement
rules and edge latencies are computed.

chine instructions into the intermediate representation. We
defined a machine description language (MDL) that must be
used to model the target architecture. The architecture de-
scription at a minimum must define the number and type of
execution units, and the resources required by each generic
instruction on that architecture. Instead of providing the en-
tire grammar of our MDL, we illustrate the most important
language constructs with snippets from our description of
the Itanium2 architecture [8].

3.2 Machine description language

Figure 3 presents the language construct for defining the
list of execution units (top) and an optional construct for
defining special restrictions between units (bottom). When
defining the available execution units, an optional multiplic-
ity factor for each unit class can be included, if there are
multiple units of the same type. Using the multiplicity op-
erator simplifies the declaration of both the list of available
units and of the instruction execution templates. In addi-
tion, it provides a single point of control when playing with
alternative machine designs that have different number of
units of a given type. Additional units can be declared just
to simplify the definition of restrictions between different
instruction execution templates within the constraints of the
language. Notice that for the Itanium2 model we included

67

List of execution units (EU):

CpuUnits = U_Alu*6, U_Int*2, U_IShift,
U_Mem*4, U_PAlu*6, U_PSMU*2,
U_PMult, U_PopCnt, U_FMAC*2,
U_FMisc*2, U_Br*3,
I_M*4, I_I*2, I_F*2, I_B*3;

Special restrictions between EUs:

Maximum 1 from U_PMult, U_PopCnt;
Maximum 6 from I_M, I_I, I_F, I_B;

Figure 3. MDL constructs for defining the ex-
ecution units and restrictions between units.

Instruction execution templates:

Instruction LoadFp template =
I_M + U_Mem, NOTHING*5;

Instruction StoreFp template =
U_Mem[2:3](1)+I_M[2:3](1);

Instruction replacement rules:

Replace FpMult $fX, $fY -> $fZ +
FpAdd $fZ, $fT -> $fD with

FpMultAdd $fX, $fY, $fT -> $fD;

Replace StoreFp $fX -> [$rY] +
LoadGp [$rY] -> $rZ with

GetF $fX -> $rZ;

Figure 4. MDL constructs for declaring in-
struction execution templates (top) and in-
struction replacement rules (bottom).

also a list of issue ports in addition to the execution units.
Using the convention that each instruction template must
declare the use of one issue port of proper type in addition
to one or more execution units, we can restrict the number
and type of instructions that can be issued in the same cycle.
For example, to model the six issue width of the Itanium2
processor, the second restriction rule in Figure 3 specifies
that at most six issue ports can be used in any given cycle.

Figure 4 presents examples of instruction execution tem-
plates and instruction replacement rule declarations. An in-
struction template defines the latency of an instruction, and
the type and number of execution units used in each cycle.
The first instruction template in Figure 4 represents the most
common format of template declaration, thus the shortest. It
applies to instructions that execute on fully pipelined sym-
metric execution units. On Itanium2, floating-point loads
can be issued to any of the four memory units, and have a
minimum latency of six cycles when data is found in the L2
cache. Thus, one LoadFp instruction is declared to need
one issue port of type I M and one execution unit of type

U Mem in the first clock cycle, plus five additional clock
cycles in which it does not conflict with the issue of any
instruction. NOTHING is a keyword which specifies that
no execution unit is used. Instruction templates can make
use of the multiplicity operator to specify consecutive clock
cycles that require the same type and number of resources.
The second template in Figure 4 shows the extended form
of declaring an execution template which is needed in case
of asymmetric execution units. While floating-point loads
can execute on any of the four memory type units, stores can
execute only on the last two units. Thus, this template uses
the optional range operator in square brackets to specify a
subset of units of a given type, and the count operator be-
tween round parentheses to specify how many units of that
type are needed. Instructions can have associated multiple
execution templates, possibly with different lengths.

Instruction replacement rules, presented in the bottom
half of Figure 4, are an important type of language con-
struct used to translate sequences of instructions from the
instruction set of the input architecture, into functionally
equivalent sequences of instructions found on the target ar-
chitecture. We introduced the replacement construct to ac-
count for slight variations in the instruction set of differ-
ent architectures. For example, the SPARC architecture
does not have a multiply-add instruction, while Itanium2
does. Moving data between general-purpose and floating-
point registers is accomplished on SPARC by a save fol-
lowed by a load from the same stack location using regis-
ters of different types. Itanium2 provides two instructions
for transferring the content of a floating-point register to a
general-purpose register and back. In addition, the IA-64
instruction set does not include the following type of in-
structions: integer multiply, integer divide, floating-point
divide, and floating-point square root. Floating-point divide
and square root operations are executed in software using a
sequence of fully pipelined instructions. The integer mul-
tiply and divide operations are executed by translating the
operands to floating-point format, executing the equivalent
floating-point operations, and finally transferring the result
back into a fixed-point register. In our Itanium2 architec-
ture description, we provide replacement rules for all these
type of instructions. Figure 2(c) presents the dependence
graph for loop i of the code shown in Figure 2(a) after the
replacement rules were applied. One multiply and one add
instructions were replaced with a single multiply-add.

The final two constructs are shown in Figure 5. By-
pass latency rules are used to specify different latencies
than what would normally result from the instruction exe-
cution templates for certain combinations of source instruc-
tion type, dependence type, and sink instruction type. The
two bypass rules shown in Figure 5 refer to control depen-
dences. For example the second rule specifies that a branch
or function call instruction can be issued in the same cycle

68

Bypass rules:

Bypass latency 1 for ANY_INSTRUCTION
-> [control] InnerLoop;

Bypass latency 0 for ANY_INSTRUCTION
-> [control] CondBranch |

UncondBranch |
Jump;

List the Memory Hierarchy Levels (MHL):

MemoryHierarchy =
L1D [256, 64, 4, *, L2D, 4],
L2D [2048, 128, 8, 32, L3D, 8],
L3D [12288, 128, 6, 32, DRAM, 110],
DRAM [*, 16384, *, 7, DISK, 10000],
TLB [128, 8, *, 1, L2D, 25];

Figure 5. Example of MDL constructs for
defining bypass latency rules (top) and for
describing the memory hierarchy levels (bot-
tom).

as an instruction that precedes it if there are no other type of
dependences between them, even if the source instruction
normally has a long latency.

The last MDL construct in Figure 5 defines the charac-
teristics of the memory hierarchy. For each memory level,
the parameters are: number of blocks, block size (bytes), as-
sociativity, bandwidth on a higher level miss (bytes/clock),
memory level accessed on a miss at this level, penalty in
cycles for going to that level. The value of some attributes
can be omitted and then a default value is used, depending
on the attribute type.

3.3 Scheduler implementation

We implemented an architecture generic, critical-path
driven, bidirectional modulo scheduler. It is close in con-
cept to Huff’s bidirectional scheduler [7], although we do
not consider register pressure among the scheduling priori-
ties at this time. The scheduler starts by pruning the depen-
dence graph of edges that create trivial self-cycles, and other
redundant edges. Next, the graph is transformed by per-
forming replacement operations described in the machine
description file, and all edges of the new graph are assigned
a latency value based on the bypass latency rules and the in-
struction execution templates. Once the latencies are com-
puted, the graph is pruned one more time, using the latency
information to identify and remove trivial edges.

Once all dependences between instructions and their as-
sociated latencies are computed, the scheduler can compute
the minimum initiation interval (MII), which represents the
minimum schedule length that is theoretically achievable.

The schedule length is bounded below by two factors: re-
source contention and dependence cycles. An execution
unit can be in use by at most one instruction in any given
clock cycle. The lower bound due to resource contention,
LBRes, is determined by how tightly we can map all in-
structions from one loop iteration to the machine execution
units, if we assume no dependences between instructions.

LBRes = max
u∈U

(uses(u)),

where U is the set of available execution units and uses(u)
represents the number of clock cycles unit u is busy for the
instructions in one loop iteration.

Separately, we compute a lower bound due to recur-
rences, LBDep. For this, we assume a machine with unlim-
ited number of resources and the bound is determined by
the longest dependence cycle. All graph edges have asso-
ciated length and distance information. The length is given
by the latency computed in a previous step. The distance
is computed by the scheduler’s front-end as part of its de-
pendency analysis phase. Dependences can be either loop
independent or loop carried [3]. Loop-independent depen-
dences have both their ends in the same iteration and their
distance is D = 0. For loop-carried dependences, the sink
instruction depends on an instance of the source instruction
from d > 0 iterations earlier, and the distance in this case is
D = d. For the example in Figure 2(c), edge E36 from the
LoadFp instruction to the FpMultAdd instruction is the
only loop-carried dependence and has a distance of 1. All
other dependences are loop independent.

For each dependence cycle c, we compute the sum of
latencies L(c) and the sum of distances T (c) over all its
edges. Every recurrence must contain at least one carried
dependence. As a result T (c) is guaranteed to be strictly
positive. If an instruction is part of a recurrence with total
length L(c) and total distance T (c), then it can start exe-
cuting no earlier than L(c) clock cycles after its instance
from T (c) iterations earlier executed. Thus, each recur-
rence creates a lower bound on schedule length equal to
�L(c)/T (c)�, and the lower bound due to application de-
pendences is:

LBDep = max
c∈C

⌈
L(c)
T (c)

⌉
,

where C is the set of dependence cycles.
The minimum initiation interval becomes MII =

max (LBRes, LBDep). In practice, most loops can be
scheduled with a length equal to this lower bound. How-
ever, for some loops, accommodating both dependences and
resource constraints increases the feasible schedule length.
To find the schedule that can be achieved, we start with
a schedule length k equal to MII and increase it until we
can successfully map all instructions onto the available re-
sources in k clock cycles. We map instructions one by

69

one, in an order determined by a dynamic priority function
that tracks how much of each recurrence is still not sched-
uled. We use limited backtracking and unscheduling of op-
erations already scheduled when the algorithm cannot con-
tinue. The full details on the implementation of this step are
beyond the scope of this paper.

3.4 Performance analysis extensions

So far, we have described the steps of a fairly standard
modulo-scheduling algorithm. Our implementation has its
strengths and weaknesses. A strength of the scheduler is
that it can be applied to different scheduling scenarios. A
weakness of the scheduler is that it ignores some architec-
tural details, such as register pressure or branch miss pre-
diction. It is adequate for our purposes because we want to
predict a lower bound (though not too loose) on achievable
performance, and to understand what sections of code may
benefit from transformations or from additional execution
units. A modulo-scheduler offers us this insight because we
can attribute each clock cycle of the resulting schedule to a
particular cause.

When we compute the minimum initiation interval of the
schedule, if LBDep ≥ LBRes, we consider that LBDep

clock cycles of each loop iteration are due to application
dependences. If, on the other hand, the bound due to re-
source contention is greater, we know also which unit was
determined to have the highest contention factor.2 If multi-
ple units have the same contention factor, the first unit de-
fined in the machine description file is selected. In such
cases we say LBRes clock cycles of each iteration are due
to resource bottlenecks, and we refine this cost further by
the type of unit that is causing the most contention.

In the next step of the algorithm, we try to find an ac-
tual feasible schedule length that takes into account both
instruction dependences and resource contention. Every
time we increase the schedule length, we determine what
resource, either execution unit or restriction rule, prevented
the scheduler from continuing. The way this scheduling
step is implemented, the algorithm does not try to sched-
ule an instruction in a clock cycle that breaks dependences.
Therefore, the scheduler fails when there is no execution
template that does not conflict with resources already allo-
cated or with one of the optional restriction rules for any
of the valid issue cycles. This additional scheduling cost
for each iteration is counted separately as scheduling extra
cost. Again, we refine this cost further by the unit type that
was the source of contention.

We compute the execution costs in a bottom-up fashion,
from the innermost loops to routines and to the entire pro-

2Because the machine model may contain optional restriction rules be-
tween units, if one of the rules is determined to cause the most contention,
then the cost is associated with that rule

gram, aggregating costs for each of the categories described
above. At the end of this process, we have not only a pre-
diction of instruction schedule time for the entire program,
each routine and each loop, but also the attribution of exe-
cution cost to the factors that contribute to that cost.

Performance monitoring hardware on most modern ar-
chitectures can provide insight into resource consumption
on current platforms. Our performance tool can provide
such insight for future architectures, at a much lower cost
than cycle accurate simulators. However, we realized that
what is lacking in current performance tools, is a way to
point the application developer, or an automatic tuning sys-
tem for that matter, to those sections of code that can benefit
the most from program transformations or from additional
machine resources. Just because a loop accounts for a sig-
nificant fraction of execution time, it may not be wasting
issue slots. It may actually have good instruction and mem-
ory balance with respect to the target architecture with little
room for improvement. We need to focus on loops that are
frequently executed but also use resources inefficiently.

3.5 New performance metrics

One of the steps in the scheduling algorithm is the com-
putation of the minimum initiation interval. For this, two
lower bounds on the schedule length are computed. LBRes

represents the lower bound due to resource contention, and
is computed assuming no schedule dependences between
instruction. Let S be the computation cost computed by the
scheduler when both instruction dependences and resource
constraints are considered. We define the metric maximum
gain achievable from increased ILP as MaxGainILP =
S − LBRes. This metric represents exactly what its name
implies. If total computation cost is S, and the cost achiev-
able with the same set of machine resources if we removed
all data dependences in loops is LBRes, then the maximum
we can expect to gain from transforming the code to in-
crease ILP, is S −LBRes. If the code’s performance is lim-
ited by the number and type of machine resources, that is if
S = LBRes, there is nothing that can be gained from trans-
forming the code, unless we rewrite the code using different
instructions that require different resources.

LBDep represents the lower bound due to dependence
cycles, and is computed assuming unlimited number of
machine resources. We define the metric maximum gain
achievable from additional resources as MaxGainRes =
S − LBDep. The name of this metric is self explanatory.
No matter how many execution units we add to a machine,
the execution cost of the code cannot be lower than LBDep

unless we also apply code transformations. For loops with-
out recurrences, LBDep of N iterations is equal to the exe-
cution cost of one iteration from start to finish, independent
of N . With an unlimited number of machine resources, and

70

with no carried dependences, all iterations can be executed
in parallel in the time taken by a single iteration. However,
we do not apply the same idea to outer loops or loops with
function calls. As we explained in Section 3.2, inner loops
and function calls act as fence instructions, so they create at
least a recurrence on themselves.

Each of these two metrics gives an estimate of the per-
formance increase possible by modifying only one variable
of the equation in isolation. At an extreme, if we removed
all dependences and we assumed an infinite number of re-
sources, we could execute a program in one cycle. But this
is too unrealistic to be of any use in practice. As with other
performance data we compute, we aggregate these two met-
rics in a bottom-up fashion up to the entire program level.
To explore this data, we output all metrics in XML format,
and use the hpcviewer user interface [11] that is part of
HPCToolkit [12].

4 Case Studies

In this section, we briefly illustrate how to analyze and
tune an application using these new performance metrics.
We study two applications. Sweep3D [1] is a 3D Carte-
sian geometry neutron transport code benchmark from the
DOE’s Accelerated Strategic Computing Initiative. As a
benchmark, this code has been carefully tuned already, so
the opportunities for improving performance are slim. The
Parallel Ocean Program (POP) [2] is a climate modeling
application developed at Los Alamos National Laboratory.
This is a more complex code with the execution cost spread
over a large number of routines. We compiled both codes
on a Sun UltraSPARC-II system using the Sun WorkShop 6
update 2 FORTRAN 77 5.3 compiler, and the optimizations:
-xarch=v8plus -xO4 -depend -dalign -xtypemap=real:64.

For Sweep3D, we used our toolkit to collect edge fre-
quency data and memory reuse distance information for a
cubic mesh size of 50x50x50 and 6 time steps without fix-
up code. For POP, we collected data for the default bench-
mark size input. Then, we processed collected data with our
modulo-scheduler using a machine model of the Itanium2
architecture, and produced performance databases in XML
format for each of the codes. In the next two sections we
look at each code on turn.

4.1 Analysis of Sweep3D

Figure 6 shows a snapshot of the hpcviewer in-
terface browsing the performance database sorted by the
MaxGainILP metric (in the bottom right pane). Due to
limited horizontal space in a paper, only two metrics are
shown: i) maximum gain expected from increased ILP, and
ii) predicted computation time. We expanded six levels of

Figure 6. Sweep3D performance data view.

scopes that are shown to account for over 98% of the poten-
tial for improvement according to this metric. While 98%
of this potential is contained within the level five loop at
lines [354–502], the I-line recursion loop without flux fixup
at lines [398–410] accounts for 56% of the entire potential
and the next most significant inner loop accounts for only
5.7% of this potential. It is clear that we have to focus our
attention on this loop. By expanding the scope of this loop,
we expose the performance data for the two paths through
this loop. While for loops we present metric totals, for paths
we show metric values per iteration.

When we reconstruct the paths taken through a loop, we
consider the paths that follow the loop back-edge and the
exit paths separately. Back-edge paths are scheduled using
software pipelining, while for exit paths software pipelining
is disabled. For this loop, first path is the exit path and we
notice the program enters this loop 720K times, and second
path is the back-edge path which is executed over 35 million
times. Looking at predicted computation time if we had
an infinite number of execution units, metric not included
in the figure, we notice that even if we had an infinitely
wide machine the time per iteration would still be 20 clock
cycles, while if we could remove the dependences, the time
per iteration would drop by 40% to 12 clock cycles. This is
the clear sign of a recurrence of 20 clock cycles in the code.
We spotted two short recurrences, but the longest recurrence
is the one marked in the source pane of Figure 6.

By manual inspection, we realized that loop jkm at lines
[354–502] has no carried dependencies. If we unroll the
jkm loop and then fuse all the inner loops, we can execute

71

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 20 40 60 80 100 120 140 160 180 200

Mesh Size

T
ra

n
s
fo

rm
e
d

 /
 O

ri
g

in
a
l

Execution Time

L2 Misses

L3 Misses

TLB Misses

Retired Instructions

 Retired NOPS

Figure 7. Performance of the transformed
Sweep3D code relative to the original version
on an Itanium2 (lower is better).

multiple I-line recursions in parallel, effectively increasing
the ILP. We decided to unroll the jkm loop only once since
we already fill 60% of the issue cycles with one iteration.
After transforming the code, we ran it again through our
tool. The predicted overall computation time3 dropped by
20% from 1.46e09 down to 1.17e09, and the total poten-
tial for improvement from additional ILP has dropped from
5.60e08 down to 1.35e08. This potential, however, is due
only to loop exit paths and outer loops that cannot be effec-
tively pipelined. For the I-line recursion loop the value of
this metric dropped by a factor of 25.

All numbers presented so far are predictions from our
tool. To see if these predicted improvements can be ob-
served on a real Itanium2 machine as well, we compiled
both the original and the transformed Sweep3D codes on
an Itanium2 based machine running at 900MHz. We com-
piled the codes with the Intel Fortran Itanium Compiler 9.0,
and the optimization flags: -O2 -tpp2 -fno-alias.4 Using
hardware performance counters we measured the execution
time, the number of L2, L3 and TLB misses, and the num-
ber of instructions and NOPs retired, for both binaries and
for mesh sizes from 10×10×10 to 200×200×200. Figure 7
presents the performance of the transformed code relative
to the performance of the original code for all input sizes.
We notice the transformed program is consistently faster by
13-18% with an average reduction of the execution time of
15.6% across these input sizes. The number of cache and
TLB misses in the two versions of the code differ by only 2-
3%, thus they cannot account for the performance increase.
The spikes for L3 and TLB misses at small problem sizes
are just an effect of the very small miss rate at those input
sizes. For larger problem sizes the differences are negli-

3This metric does not include memory penalty.
4We tried -O3 as well, but -O2 yielded higher performance.

gible. However, we see the number of retired instructions
dropped by 16.3% and the number of retired NOPs dropped
by 30%, a sign that issue bundles are filled with more use-
ful instructions. We observed also an increase in memory
parallelism in the transformed program, which lowers the
exposed memory penalty and could be a factor for the in-
creased performance.

Although we do not show any data, similar recurrences
are in the I-line recursion loop with flux fixup at lines [416–
469]. Which version of the loop is executed is controlled
from the input file. The transformed code improves the ex-
ecution time of that loop by a similar factor, and our mea-
surements on Itanium2 confirmed this result.

We should mention that the performance increase ob-
tained on Itanium2 might not be observed on every ar-
chitecture. The I-line recursion loop contains a floating
point divide operation (see Figure 6). If the throughput
of the divider unit is low, or if the machine issue width is
much lower, combined with possibly increased contention
on other units, then the loop might be resource limited even
in the original form, or the improvement could be only mod-
est. However, our tool will predict correctly the lack of po-
tential gains if the machine model is accurate. Itanium2 has
a large issue width and floating point division is executed
in software with a sequence of fully-pipelined instructions.
Thus, while the latency of one divide operation from start to
finish may be longer than what could be obtained in hard-
ware, this approach is efficient when many divide opera-
tions need to be executed.

4.2 Analysis of POP

POP is a more complex application than Sweep3D and
it has no single routine that accounts for a significant per-
centage of running time. Table 1 presents performance data
for the top eight routines based on the potential for im-
provement from additional ILP. That data is predicted for
an execution of POP 2.0.1 with the default benchmark size
input on an Itanium2 machine model. In addition to the
MaxGainILP metric, Table 1 includes the predicted com-
putation time and the rank of each routine if data was sorted
by computation cost.

Unlike Sweep3D where effectively all execution time is
spent in a single loop nest, in POP the execution cost is
spread over a large number of routines. A traditional anal-
ysis looking for the most time consuming loops would not
work well on this code since there is not a single loop or
routine that accounts for a significant percentage of the run-
ning time. Sorting scopes by the MaxGainILP metric en-
ables us to at least limit our investigation to those scopes
that show a non-negligible potential for improvement. The
routine with the highest predicted potential for improve-
ment, boundary 2d dbl, at closer inspection proved to

72

Routine MaxGainILP CpuTime Rnk
boundary 2d dbl 4.02e08 13.8% 6.99e08 6.2% 4
impvmixt 3.53e08 12.1% 6.17e08 5.5% 5
impvmixt correct 3.45e08 11.8% 5.85e08 5.2% 7
global sum dbl 2.44e08 8.4% 3.38e08 3.0% 15
diag global preup 1.51e08 5.2% 3.26e08 2.9% 17
impvmixu 1.51e08 5.2% 3.26e08 2.9% 18
advt centered 1.50e08 5.1% 3.85e08 3.4% 12
tracer update 1.43e08 4.9% 7.78e08 6.9% 2

Table 1. POP: the top eight routines based on
the improvement potential from extra ILP.

contain some frequently executed short loops which do not
contain recurrences. The potential for improvement shown
for this routine is the result of frequently executed loop exit
paths that are not software pipelined. However, the follow-
ing two routines, impvmixt and impvmixt correct,
contain loops with recurrences that account for most of the
predicted improvement potential of these routines. These
loops perform a tridiagonal solve in the vertical for every
horizontal grid point and each tracer. Both these routines
perform a very similar computation, thus what we describe
below applies to both of them.

By visually inspecting the code of routine impvmixt,
we realized that neither of the two outer loops carry any de-
pendences, the computation for each horizontal grid point
being independent. This means we can apply unroll & jam
again to increase the ILP. However, the upper bound of the
tridiagonal solve loop is a function of the ocean depth of
each grid point. If we want to perform the tridiagonal solve
for two grid points at a time, we must either ensure that
they have the same depth, or compute the solve in parallel
up to the minimum depth of a pair of points followed by
a reminder loop that computes the residual points for the
deepest point. Because the maximum depth specified in the
benchmark input file is relatively small and the depths are
integer values, we decided to implement the first solution.
For this, we use a temporary array of size equal to the max-
imum possible depth to store the coordinates of the most re-
cently encountered horizontal grid point with a given depth.

Routines impvmixt and impvmixt correct are in
fact very similar. They have almost identical code, includ-
ing the tridiagonal solve loop. We transformed the code for
routine impvmixt correct using the same approach we
used for the impvmixt routine. The other routines shown
in Table 1 have a smaller potential for improvement from
additional ILP. We found that with the exception of rou-
tine impvmixu which is similar to the routines presented
above, the other routines do not contain real recurrences,
but the potential for improvement is due to reduction oper-
ations that are not sufficiently parallelized by the Sun com-
piler used to compile the analyzed binary. We expect the

Intel compiler will compute the reductions more efficiently
given the fact it is targeted to a wider-issue architecture.
We decided not to transform the code corresponding to rou-
tine impvmixu since this routine contributes less than 3%
to the total computation time, and this percentage is even
smaller once the memory penalty is considered.

We measured the performance of the original and the
transformed versions of the code on our Itanium2 based ma-
chine. Since the two routines that were modified together
account for only around 10% of the computation time in
the original code, and since our transformations can in the
best case scenario cut their computation cost in half, we ex-
pect at most a 5% improvement for the overall program.
Once we consider the memory hierarchy delays that our
transformations do not attempt to improve, the overall im-
provement that can be achieved should be even less. Using
the default benchmark size input file, 192 × 128 horizontal
grid points, we measured an overall performance increase of
3.78% for the transformed version. Increasing the number
of grid points slightly to 208 × 144, the observed perfor-
mance increase was 4.55%. While the overall improvement
for this code is not substantial for reasons explained earlier,
the transformation of the code was straightforward, and our
performance modeling tool led us to these loops and pre-
dicted accurately the potential for improvement.

5 Related Work

Hardware counters provide a low overhead mechanism
for monitoring the interactions between an application and
its execution platform. A variety of tools use hardware
performance counters to characterize the dynamic behav-
ior of applications, e.g. HPCToolkit [12] and OProfile [13].
While these tools correlate resource utilization and archi-
tectural events with source programs, they don’t provide in-
sight into the factors that cause those events or into how per-
formance would change if the machine characteristics were
adjusted.

Many research groups use simulation or instruction
schedulers to estimate application performance on a target
architecture. Trimaran [5] provides an infrastructure for in-
vestigating the interplay between architecture parameters,
compiler technology and applications. It evaluates overall
application execution time using simulation. SLOPE [6]
provides compiler based sensitivity analysis and perfor-
mance prediction. It classifies memory references as strided
or random and uses a simple list scheduler to compute in-
struction schedules for basic blocks, as the basis for static
performance predictions. MonteSim [14], is a Monte Carlo
simulator for predicting application performance on in-
order microarchitectures. The simulation predicts the rate
at which an application’s instructions execute on a modeled
architecture and how much time it will spend stalled. In

73

contrast, our work uses both static and dynamic analysis
to provide application-centric performance feedback useful
for tuning in addition to computing predictions of memory
hierarchy and execution behavior.

6 Conclusions and Future Plans

This paper describes a performance modeling approach
that can guide tuning by highlighting the factors that limit
performance at points in a program. We describe two new
performance metrics that can pinpoint sections of code with
the highest potential for improvement from increased in-
struction level parallelism or from additional machine re-
sources. These metrics can be directly computed by a
modulo-scheduler. We presented a machine description lan-
guage (MDL) that can model the main architecture char-
acteristics affecting instruction scheduling and instruction
latencies, and a modulo-scheduler targeted to such a ma-
chine model. The MDL’s replacement rules are essential for
producing accurate cross-architecture predictions. Apply-
ing our approach to the ASCI Sweep3D benchmark using
an Itanium2 machine model, we found a loop with high po-
tential for improvement from additional ILP. Transforming
the loop increased overall application performance by 16%
on an Itanium2-based platform. Applying our approach to
POP, we identified routines with poor ILP and correctly pre-
dicted the potential for improving them. Transforming the
code to increase ILP yielded 4% better performance.

This paper explores only one of the possible applications
of these metrics. We are currently studying how to apply
these and other metrics to understand which sections of a
code could benefit from acceleration using an FPGA. Our
future plans call for exploring how to extend our reuse dis-
tance based analysis of memory access patterns to identify
how to improve memory hierarchy performance by apply-
ing loop transformations such as fusion and tiling.

7 Acknowledgments

This work is supported in part by the National Sci-
ence Foundation under Cooperative Agreement No. CCR-
0331654, the Department of Energy (DOE) Office of Sci-
ence Cooperative Agreement No. DE-FC02-06ER25762,
and DOE under Contract Nos. 03891-001-99-4G, 74837-
001-03 49, 86192-001-04 49, and/or 12783-001-05 49 from
the Los Alamos National Laboratory. Experiments were
performed on equipment purchased with support from In-
tel and the National Science Foundation under Grant No.
EIA-0216467.

References

[1] The ASCI Sweep3D Benchmark Code. DOE Ac-
celerated Strategic Computing Initiative. http:
//www.llnl.gov/asci benchmarks/asci/
limited/sweep3d/asci sweep3d.html.

[2] The Parallel Ocean Program (POP). http://climate.
lanl.gov/Models/POP.

[3] R. Allen and K. Kennedy. Optimizing Compilers for Mod-
ern Architectures: A Dependence-Based Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[4] B. Bennett and V. Kruskal. LRU Stack Processing. IBM
Journal of Research and Development, 19(4):353–357, July
1975.

[5] L. N. Chakrapani, J. Gyllenhaal, W. W. Hwu, S. A. Mahlke,
K. V. Palem, and R. M. Rabbah. Trimaran: An Infrastructure
for Research in Instruction-Level Parallelism. Lecture Notes
in Computer Science, 3602:32–41, 2005.

[6] P. C. Diniz and J. Abramson. SLOPE: A Compiler Ap-
proach to Performance Prediction and Performance Sensi-
tivity Analysis for Scientific Codes. Cyberinfrastructure
Technology Watch: Special Issue on HPC Productivity,
2(4B), Nov. 2006.

[7] R. A. Huff. Lifetime-Sensitive Modulo Scheduling. In PLDI
’93: Proceedings of the ACM SIGPLAN 1993 Conference on
Programming Language Design and Implementation, pages
258–267, New York, NY, USA, 1993. ACM Press.

[8] Intel Corporation. Intel Itanium2 Processor Reference Man-
ual for Software Development and Optimizations, 2003.

[9] G. Marin and J. Mellor-Crummey. Cross-Architecture Per-
formance Predictions for Scientific Applications Using Pa-
rameterized Models. In Proceedings of the Joint Interna-
tional Conference on Measurement and Modeling of Com-
puter Systems, pages 2–13. ACM Press, June 2004.

[10] G. Marin and J. Mellor-Crummey. Scalable Cross-
Architecture Predictions of Memory Hierarchy Response
for Scientific Applications. In Proceedings of the Los
Alamos Computer Science Institute Sixth Annual Sympo-
sium, Santa Fe, NM, USA, Oct. 2005. http://lacsi.
rice.edu/symposium/symposiumdownloads/
lacsi 2005/papers/pap108.pdf.

[11] J. Mellor-Crummey. Using hpcviewer to Browse
Performance Databases, Feb. 2004. http:
//www.hipersoft.rice.edu/hpctoolkit/
tutorials/Using-hpcviewer.pdf.

[12] J. Mellor-Crummey, R. J. Fowler, G. Marin, and N. Tallent.
HPCVIEW: A Tool for Top-down Analysis of Node Per-
formance. The Journal of Supercomputing, 23(1):81–104,
2002.

[13] The OProfile website. http://oprofile.
sourceforge.net/docs.

[14] R. Srinivasan and O. Lubeck. MonteSim: A Monte
Carlo Performance Model for In-order Microachitectures.
SIGARCH Computer Architecture News, 33(5):75–80, 2005.

[15] R. E. Tarjan. Testing Flow Graph Reducibility. Journal of
Computer and System Sciences, 9:355–365, 1974.

74

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

